• Title/Summary/Keyword: marginally conditional variables

Search Result 2, Processing Time 0.014 seconds

A study on decision tree creation using marginally conditional variables (주변조건부 변수를 이용한 의사결정나무모형 생성에 관한 연구)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.299-307
    • /
    • 2012
  • Data mining is a method of searching for an interesting relationship among items in a given database. The decision tree is a typical algorithm of data mining. The decision tree is the method that classifies or predicts a group as some subgroups. In general, when researchers create a decision tree model, the generated model can be complicated by the standard of model creation and the number of input variables. In particular, if the decision trees have a large number of input variables in a model, the generated models can be complex and difficult to analyze model. When creating the decision tree model, if there are marginally conditional variables (intervening variables, external variables) in the input variables, it is not directly relevant. In this study, we suggest the method of creating a decision tree using marginally conditional variables and apply to actual data to search for efficiency.

A study on association rule creation by marginally conditional variables (주변 조건부 변수에 의한 연관성 규칙 생성에 관한 연구)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.121-129
    • /
    • 2012
  • Association rule mining searches for interesting relationships among items in a given database. Currently, study of the constraint-based association rules are underway by many researchers. When we create relation rule, we can often find a lot of rules. Of this rules, we can find rule that direct relativity by marginally conditional variables (intervening variable, external variable) does not exist. In such a case, this association rule can be considered insignificant. In this study, we want to study for association rules creation using marginally conditional variable. The result of this study can find meaningless association rules. Also, we can understand more exactly the relationships between variables.