• Title/Summary/Keyword: marble effect

Search Result 33, Processing Time 0.026 seconds

A review on the effect of marble waste on properties of green concrete

  • Rachid Djebien;Amel Bouabaz;Yassine Abbas;Yasser N. Ziada
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • All production and consumption activities produce wastes, which often cause damage to our environment and multiple risks to the human health. The valorization of these wastes in concrete technology is a future solution that will allow finding other construction materials sources, optimizing energy consumption and protecting the environment. Among these wastes, there is the marble waste. Every year, huge amount of marble waste is discarded as dust or aggregates form, in open-air storage areas causing serious problems for the environment and public health. In this context, the incorporation of marble waste as a replacement of ordinary aggregates or cement in concrete composition is actively investigated by researchers. This paper presents a comprehensive review of published studies over the last 20 years, dealing the effect of marble waste on fresh and hardened properties of concrete. Most of the studies carried out have used marble waste as dust with substitution rates between 5 and 20%. Besides the economic and ecological benefits, this review showed that marble waste can improve the physical, mechanical and durability properties of concrete. This improvement depends on the form (dust, fine aggregate or coarse aggregate), substitution method (as cement or aggregates replacement) and substitution rate of marble waste. Additionally, the review results showed that the use of 10-15% of marble waste dust as cement substitution can lead to increase the compressive strength.

Design Research of the Natural Leather using a Marbling Technique (I) (Marbling 기법을 응용한 천연가죽의 디자인 연구 (I))

  • Lee, Sang-Chul;Shin, Eun-Chul;Kim, Won-Ju;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • The study has attempted to introduce a new coating than the conventional standardized method of spray, padding and roll coating. The study has focused on finding condition for separating water and organic layer in marble bath and surface effects according to kind of raw hide. It was found that dyestuff-free was to be used in water layer and the input amount of initial insoluble pigment to be added in marble bath should be adjusted following the change of surface area of the marble bath in order to get efficient marble effect while preventing coagulation of water and organic layers. Eventually, amorphous high value-added leather could be obtained treated in process other than the conventional standardized method. Even raw hides of low grades($C{\sim}E$ grades) could be processed into amorphous marble effect that could conceal or shield surface scratches by the colorant, which eventually eliminated necessity of using excessive amount of chemicals in the coating process leading to achieving high quality marble leather of natural look.

Effect of marble waste fines on rheological and hardened properties of sand concrete

  • Djebien, R.;Belachia, M.;Hebhoub, H.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1241-1251
    • /
    • 2015
  • Faced with the growing needs of material resources and requirements of environmental protection for achieving sustainable development, it has become necessary to study and investigate all possibilities of exploring crushed and dune sand, reusing industrial wastes and by-product, and also applying new technologies including sand concrete which can replace the conventional concretes in certain structures to surmount the deficit on construction materials, conserve natural resources, lessen the burden of pollutants to protect the environment and reduce the consumption of energy sources. This experimental study is a part of development and valorization of local materials project in Skikda region (East of Algeria). It aims at studying the effects of partial replacement of sand with marble waste as fines on several fresh and hardened properties of sand concrete in order to reuse these wastes in the concrete manufacturing, resolve the environmental problems caused by them and find another source of construction materials. To achieve these objectives, an experimental program has been carried out; it was consisted to incorporate different percentages of marble waste fines (2, 4, 6, 8, 10 and 12%) in the formulations of sand concrete and study the development of several mechanical and rheological properties. We are also trying to find the optimal percentage of marble waste fine replaced in sand concrete that makes the strength of the concrete maximum. Obtained results showed that marble waste fines improve the properties of sand concrete and can be used as an additive material in sand concrete formulation.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Introduction of sand marble wastes in the composition of mortar

  • Hebhoub, H.;Belachia, M.;Djebien, R.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.491-498
    • /
    • 2014
  • During the past years, the protection of the environment has become a major concern out passing the state frontiers to reach a planetary dimension. Depository waste sites have become a serious problem in terms of their locations and costs. On the other hand, the construction industry has a leading place in terms of quantities of waste produced from the start to the end of each construction site, by the large amounts of raw materials used and their respective consequences on the environment. The recycling of quarry wastes products, of demolished concrete, bricks and large quantities of waste resulting from the transformation of marble blocks can provide ideal solutions and advantages for the preservation of the environment, to become a supplementary source of aggregates. The main purpose of this study is to show technically the possibility of recuperating the aggregates of marble wastes as a partial substitute or total in the mortars. The aggregates used in this study is a sand of marble wastes (excess loads of sand exposed to bad weather conditions) of the quarry derived from Fil-fila marble (Skikda, east of Algeria). To achieve this work, we have studied the effect of sand substitution of marble wastes in the mortar with rates of (25, 50, 75, 100%); comparing the results obtained with reference samples (0%), the properties when the samples are fresh, and the mechanical performances of mortars at solid state (loss and gain of weight, dimensional variations). The introduction of recycled sand in the mortars gives good results and can be used as granulates.

Study on Recycling Technology of Waste Artificial Marble using Starch (전분을 이용한 폐인조대리석의 재활용 기술에 관한 연구)

  • Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.6
    • /
    • pp.433-440
    • /
    • 2018
  • The pyrolysis has been universally applied to recycle the waste artificial marble. However, the existing heat treatment equipment has relatively low heat transfer efficiency into the inner part of the waste artificial marble. Besides, it leads to unnecessary excessive gas during the partial carbonization of the polymethyl methacrylate (PMMA) and raises the risk of fire due to heat at an extremely high temperature. This study suggests the process of pyrolysis at the formation state after adding the starch to waste artificial marble to overcome above-mentioned problems. As the result of experiments, this method showed that the pyrolysis of waste artificial marble was greatly improved at comparatively low temperature condition of $350^{\circ}C$. Moreover, it also manifested the effect on securing the stability and energy savings necessary for the recovery of methyl methacrylate (MMA) and ${\alpha}$-alumina (${\alpha}-Al_2O_3$).

Effect of Acid Rain on Marble Cultural Properties (대리석 문화재에 대한 산성비의 영향)

  • Kim, Sa Dug;Hwang, Jin Ju;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.7 no.1
    • /
    • pp.19-22
    • /
    • 1998
  • The influence of acid rain on the marble cultural properties investigated in two ways : 1) marble samples similar to that of Wongak-sa 10-story pagoda were directly exposed to rain in air at Chongro and Kwanghwamun sites; 2) marble samples under a protective facility were indirectly exposed to rain. The quantity of corrosion products and variations of calcium ion to rain were analyzed. The result shows that the corrosion qantity of the marble samples exposed directly under 1~8 mm rainfall in the Chongno and Kwanghwamun sites were similar, but those were 7.7 times higher than those indoor. Concentration of anions were higher than that of cations among the ion concentration over 40% in the early 1 mm rainfall. Calcium ion was produced over 30%. Because the monuments of marble, limestone and sandstone were affected by acid rain, it may be necessary to establish policies for the conservation on the National Treasures made of these materials.

  • PDF

Effect of Waste Marble Powder on the Fundamental Properties of High Fluidity Concrete (폐 대리석 분말을 혼입한 고유동 콘크리트의 기초적 특성에 대한 실험적 연구)

  • Lee, Yong-Moo;Shin, Sang-Yeop;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.153-160
    • /
    • 2015
  • The marble powder is a by-product that can be freely collected during the manufacturing process of marble, such as sawing, shaping, and polishing. Disposal of this waste powder is one of the environmental problems worldwide today. Therefore, this study investigated to solve this problem by consuming the waste marble powder in high fluidity concrete, as a pore filler. For this purpose, the waste marble powder was used as a binder replacing 5%, 10%, 15%, and 20% of cement in high fluidity concrete. After mixing, slump flow test, time-to-reach the slump flow of 500mm test, O-lot test and U-box test were conducted with fresh concrete. For the hardened concrete, compressive strength was determined at the age of 28 days. According to the test results, the workability of high fluidity concrete increased with the powder of 15% replacement, and the compressive strength of high fluidity concrete also increased with the same amount of powder.

Characteristics of Material Damage Caused by Acid Deposition in East Asia

  • Yoo, Young-Eok;Maeda, Yasuaki
    • Journal of Environmental Science International
    • /
    • v.11 no.5
    • /
    • pp.445-454
    • /
    • 2002
  • Material exposure experiments were performed to evaluate the relationship between air pollution and material corrosion rates based on collaboration with researchers in China, Japan, and Korea. Qualitative and quantitative atmospheric corrosion was estimated from damage caused to bronze, copper, steel, marble, cedar, cypress, and lacquer plates exposed to outdoor and indoor conditions in certain East Asian cities. The effects of atmospheric and meteorological factors on the damage to the copper plates and marble pieces were estimated using a regression analysis. The results indicated that sulfur dioxide produced the most destruction of the materials, especially in South Korea and China. In Japan, the copper plates were damaged as a result of natural conditions and sea salt. Copper was also found to be damaged by the surface deposition of sulfur and chlorine. Meanwhile, marble was substantially degraded by gaseous sulfur dioxide, yet sulfate ions in rain had no effect. Accordingly, the analysis of air pollution from the perspective of material damage was determined to be very useful in evaluating and substantiating the intensity of air pollution in East Asia.