자율 주행 기술이 발전함에 따라 주행 주변 환경을 인식하는 데 차량 위치의 정확성은 매우 중요하다. 측위의 정확도를 높이기 위해 정밀지도를 사용한 지도 정합 측위기술(map-matching localization)이 연구되고 있다. 기존의 지도 정합 기법은 지도에서 차선의 중심으로 표현된 데이터를 기반으로 차량 위치를 추정하기에 차선 내 측면 거리의 편차를 반영하지 않는다. 따라서 본 논문에서는 정밀한 측위를 제공하기 위해 영상처리를 통한 차선 검출 기법과 정밀지도의 차선 위치 정보를 이용한 기법을 제안한다. 영상 처리 기법으로 IPM(inverse perspective mapping)과 다중 차선 검출 기법, 중앙선 검출 기법을 통하여 차선 번호를 검출하고 차선 이탈 감지 방법으로 차선 중심으로부터 차량의 측면 거리를 추정한다. 최종적으로 영상처리로 검출한 차선 번호와 GNSS / INS의 위치를 기반으로 정밀지도에서 위치 링크정보를 추출하고 추출된 링크에 측면 거리를 반영하여 차선 내 차량의 위치를 추정한다. 제안된 방법의 성능을 평가하기 위하여 실제 도로에서 실험하였다. 제안하는 방법은 GNSS / INS와 비교 시 약 1.0m 정도 정확도가 개선되며, 기존의 차선레벨 맵매칭 방법과 비교 시 구간별로 약 0.04m ~ 0.21m(7~30%) 정확도가 개선됨을 확인하였다.
Abdalla, Hemn Barzan;Ahmed, Awder Mohammed;Al Sibahee, Mustafa A.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권5호
/
pp.1886-1908
/
2020
With the technical advances, the amount of big data is increasing day-by-day such that the traditional software tools face a burden in handling them. Additionally, the presence of the imbalance data in big data is a massive concern to the research industry. In order to assure the effective management of big data and to deal with the imbalanced data, this paper proposes a new indexing algorithm for retrieving big data in the MapReduce framework. In mappers, the data clustering is done based on the Sparse Fuzzy-c-means (Sparse FCM) algorithm. The reducer combines the clusters generated by the mapper and again performs data clustering with the Sparse FCM algorithm. The two-level query matching is performed for determining the requested data. The first level query matching is performed for determining the cluster, and the second level query matching is done for accessing the requested data. The ranking of data is performed using the proposed Monarch chaotic whale optimization algorithm (M-CWOA), which is designed by combining Monarch butterfly optimization (MBO) [22] and chaotic whale optimization algorithm (CWOA) [21]. Here, the Parametric Enabled-Similarity Measure (PESM) is adapted for matching the similarities between two datasets. The proposed M-CWOA outperformed other methods with maximal precision of 0.9237, recall of 0.9371, F1-score of 0.9223, respectively.
정사투영사진 지도는 입체영상에 존재하는 공액점을 수치적으로 탐색하여 높이를 결정하는 수치사진측량 방법을 사용하여 제작되며, 공액점을 자동으로 결정하기 위한 수치영상정합 방법에 대한 많은 연구가 진행 중이다. 본 연구에서는 수치영상정합에서 공통적으로 사용되는 영상 피라미드의 4가지 축척 계수 변화와 8가지 기준영역의 크기의 변화에 따른 영역기반정합의 정확도에 미치는 영향을 고찰하였다. 각 방법에 대한 영상정합 결과는 l/5,000 수치지도 자료와 비교하였고, 영상정합의 성공률을 분석하여 최적 기준영역의 크기를 결정하였다. 수치지형모델은 결정된 영상정합 결과와 광속조정법을 이용하여 생성하였으며, 수치표고모델과 정사투영사진을 이용하여 정사투영사진 지도를 제작하였다.
본 논문에서는 화상회의 시스템 등 인물 위주의 스테레오 영상으로부터 깊이 정보를 추출하기 위한 스테레오 정합 기법을 제안한다. 제안한 기법에서는 두 대의 스테레오 카메라로부터 획득된 영상에서 임계값을 이용하여 배경을 먼저 제거하고, 배경이 제거된 영상과 카메라 보정을 거친 영상을 이용하여 초기 변이지도(disparity map)와 R, G, B, white 4개의 색상 성분으로 분할한 영상을 생성하게 된다. 각 색상 정보로 분할된 영상의 경계(edge) 성분을 추출하고, 추출된 경계에서 정합 창을 이용하여 변이를 추정하고 각 색상 정보의 변이지도를 적절히 조합하여 최종 변이지도를 생성하게 된다. 실험 결과 제안한 기법이 기존의 영역기반(window based) 정합기법과 동적계획법(dynamic programing method) 등보다 인물 위주의 스테레오 영상에서 더 우수한 성능을 가지는 것을 확인하였다.
The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.
A hybrid approach which includes edge- and region-based methods is considered. The modified non-linear Laplacian(MNL) filter is used for feature extraction. The matching algorithm has three steps which are edge, signed region, and residual region matching. At first, the edge points are matched using the sign and direction of edges. Then, the disparity is propagated from edge to inside region. A variable window is used to consider the local method which give accurate matched points and area-based method which can obtain full-resolution disparity map. In addition, a new relaxation algorithm for considering matching possibility derived from normalized error and regional continuity constraint is proposed to reduce the mismatched points. By the result of simulation for various images, this algorithm is insensitive to noise and gives full- resolution disparity map.
In this study, three kinds of Mn-Zn ferrite/Ni-Zn ferrite/$Ni_2Y$ ferroxplana prepared by the coprecipitation method was compounded with silicon rubber, and thereafter made ring-type specimens with various compositional ratio. The material constant of ferrite/rubber composite absorbers was obtaibed by the 2-port method. The material constants of the ferrite/rubber composite absorber with various compositional ratio of three kinds of ferrite were used to design the matching frequency and thickness with the impedance matching map. We were able to predict the matching condition from the design method.
This paper presents a method of single image dehazing and feature matching for aerial remote sensing images. In the case of a aerial image, transferring the information of the original image is difficult as the contrast leans by the haze. This also causes that the image contrast decreases. Therefore, a refined transmission map based on a hidden Markov random field. Moreover, the proposed algorithm enhances the accuracy of image matching surface-based features in an aerial remote sensing image. The performance of the proposed algorithm is confirmed using a variety of aerial images captured by a Worldview-2 satellite.
This paper presents a modified localization scheme of a mobile robot. When it navigates, the position error of a robot is increased and doesn't go to a goal point where the robot intends to go at the beginning. The objective of localization is to estimate the position of a robot precisely. Many algorithms were developed and still are being researched for localization of a mobile robot at present. Among them, a localization algorithm named continuous localization proposed by Schultz has some merits on real-time navigation and is easy to be implemented compared to other localization schemes. Continuous Localization (CL) is based on map-matching algorithm with global and local maps using only ultrasonic sensors for making grid maps. However, CL has some problems in the process of searching the best-scored-map, when it is applied to a mobile robot. We here propose fast and powerful map-matching algorithm for localization of a mobile robot by experiments.
한국방송공학회 1997년도 Proceedings International Workshop on New Video Media Technology
/
pp.131-136
/
1997
We present a method to estimate a dense and sharp depth map using multiple cameras for the application to flexible video production. A key issue for obtaining sharp depth map is how to overcome the harmful influence of occlusion. Thus, we first propose to selectively use the depth information from multiple cameras. With a simple sort and discard technique, we resolve the occlusion problem considerably at a slight sacrifice of noise tolerance. However, boundary overreach of more textured area to less textured area at object boundaries still remains to be solved. We observed that the amount of boundary overreach is less than half the size of the matching window and, unlike usual stereo matching, the boundary overreach with the proposed occlusion-overcoming method shows very abrupt transition. Based on these observations, we propose a hierarchical estimation scheme that attempts to reduce boundary overreach such that edges of the depth map coincide with object boundaries on the one hand, and to reduce noisy estimates due to insufficient size of matching window on the other hand. We show the hierarchical method can produce a sharp depth map for a variety of images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.