• 제목/요약/키워드: map accuracy

검색결과 1,360건 처리시간 0.029초

위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구 (A Study on Lightweight CNN-based Interpolation Method for Satellite Images)

  • 김현호;서두천;정재헌;김용우
    • 대한원격탐사학회지
    • /
    • 제38권2호
    • /
    • pp.167-177
    • /
    • 2022
  • 위성 영상 촬영 후 지상국에 전송된 영상을 이용하여 최종 위성 영상을 획득하기 위해 많은 영상 전/후 처리 과정이 수반된다. 전/후처리 과정 중 레벨 1R 영상에서 레벨 1G 영상으로 변환 시 기하 보정은 필수적으로 요구된다. 기하 보정 알고리즘에서는 보간 기법을 필연적으로 사용하게 되며, 보간 기법의 정확도에 따라서 레벨 1G 영상의 품질이 결정된다. 또한, 레벨 프로세서에서 수행되는 보간 알고리즘의 고속화 역시 매우 중요하다. 본 논문에서는 레벨 1R에서 레벨 1G로 변환 시 기하 보정에 필요한 경량화된 심층 컨볼루션 신경망 기반 보간 기법에 대해 제안하였다. 제안한 기법은 위성 영상의 해상도를 2배 향상하며, 빠른 처리 속도를 위해 경량화된 심층 컨볼루션 신경망으로 딥러닝 네트워크를 구성하였다. 또한, panchromatic (PAN) 밴드 정보를 활용하여 multispectral (MS) 밴드의 영상 품질 개선이 가능한 피처 맵 융합 방법을 제안하였다. 제안된 보간 기술을 통해 획득한 영상은 기존의 딥러닝 기반 보간 기법에 비해 정량적인 peak signal-to-noise ratio (PSNR) 지표에서 PAN 영상은 약 0.4 dB, MS 영상은 약 4.9 dB 개선된 결과를 보여주었으며, PAN 영상 크기 기준 36,500×36,500 입력 영상의 해상도를 2배 향상된 영상 획득 시 기존 딥러닝 기반 보간 기법 대비 처리 속도가 약 1.6배 향상됨을 확인하였다.

항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 - (Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun -)

  • 안필균;엄성준;김용균;조한솔;김상범
    • 농촌계획
    • /
    • 제27권4호
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

심볼 테이블을 이용한 펌웨어 리눅스 커널 버전 정적 식별 기법 (Static Identification of Firmware Linux Kernel Version by using Symbol Table)

  • 김광준;최여정;김윤정;이만희
    • 정보보호학회논문지
    • /
    • 제32권1호
    • /
    • pp.67-75
    • /
    • 2022
  • 장비 도입 시 해당 장비에 설치된 커널의 정확한 버전을 식별하는 것은 매우 중요하다. 특정 커널 버전에 취약점이 발견된 경우 이에 대해 조치 여부를 판단하거나, 특정 커널 버전의 제외 또는 포함 등에 대한 도입 요구 조건이 있는 경우 이를 판단하는데 사용될 수 있기 때문이다. 하지만 많은 시스템 및 네트워크 장비 제조업체들은 공식적으로 배포되고 있는 리눅스 기저 커널을 그대로 사용하지 않고, 장비에 최적화된 펌웨어를 제작하기 위해 커널을 수정하여 사용하므로 리눅스 커널 버전을 판단하기 어려운 상황이 발생한다. 또한, 커널의 패치가 공개될 경우 제조사는 수정한 커널에 패치 내용을 반영하므로, 이런 과정이 지속될 경우 커스터마이징된 커널은 리눅스 기저 커널과 매우 다른 형상이 된다. 따라서, 특정 파일 존재 여부 등의 단순한 방법으로는 리눅스 커널을 정확히 식별하기 어렵다. 새로운 리눅스 커널 버전이 공개될 때는 새로운 함수가 포함되기도 하고 기존 함수가 삭제되기도 한다. 본 논문에서는 심볼 테이블에 저장된 함수명을 이용하여 펌웨어 커널 버전의 정적 식별 방안을 제안하고 실험을 통해 그 실효성을 증명하였다. 100개의 리눅스 펌웨어를 대상으로 한 실험에서 99%의 정확도로 리눅스 커널 버전을 식별할 수 있었다. 본 연구를 통해 펌웨어 이용 환경의 보안성 향상에 기여할 것으로 기대한다.

수량화이론 I방법에 의한 아까시나무 임분의 적지 환경인자 도출 (Derivation of Suitable-Site Environmental Factors in Robinia pseudoacacia Stands Using Type I Quantification Theory)

  • 김소라;송정은;박천희;민수희;홍성희;임종수;손영모
    • 한국산림과학회지
    • /
    • 제111권3호
    • /
    • pp.428-434
    • /
    • 2022
  • 본 연구는 밀원식물인 아까시나무의 적지적수 조림을 위해 임지생산력을 나타내는 지위지수를 도출하고, 지위지수에 어떠한 입지환경인자가 영향을 미치는 지를 수량화이론 I방법으로 구명하고자 수행되었다. 분석에 사용된 자료는 6차 국가산림자원조사와 1/5,000 산림입지토양도 상의 임령, 우세목 수고 및 각종 입지환경인자였다. 6차 국가산림자원조사에 의한 우리나라 아까시나무 임분의 지위지수는 평균 14였으며, 범위는 8에서 18 사이에 있는 것으로 분석되었다. 그리고 지위지수에 영향하는 입지환경인자는 모암, 기후대, 토양성질, 국소지형과 해발고였으며, 수량화이론 I방법을 적용한 추정모델의 적합도는 33%였다. 이 추정모델의 적합도는 낮으나 1% 수준에서 유의성이 인정되어 지위지수와 입지환경인자 간의 상호 연관성을 설명할 수 있었다. 지위지수와 입지환경인자 간의 수량화 분석 결과, 모암은 변성암, 화성암이, 기후대는 온대중부지역 이상에서, 토성은 식양토, 미사질양토가, 국소지형은 산복 지역에서 높은 점수를 갖는 것으로 나타났다. 임지생산력(지위지수)에 영향하는 입지환경인자 각각의 편상관을 분석한 결과, 산림 내 토양의 성질과 해당 입지의 해발고에 대한 편상관계수가 0.4129, 0.4023으로 각각 나타나, 이들이 가장 영향력이 높은 인자임을 알 수 있었다.

전산유체역학 후류모델 특성에 따른 산악지형 풍력발전단지 후류확산 형태 민감도 분석 (Sensitivity Analysis of Wake Diffusion Patterns in Mountainous Wind Farms according to Wake Model Characteristics on Computational Fluid Dynamics)

  • 김성균;류건화;김영곤;문채주
    • 한국전자통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.265-278
    • /
    • 2022
  • 육·해상 풍력 프로젝트 성공여부는 사업의 경제성 확보에 중점을 두고 있으며, 이는 양질의 풍력자원 확보와 풍력단지 최적배치에 의해 좌우된다. 풍력단지를 배치하는 과정에서 주풍향을 고려한 풍력터빈들의 최적배치 방법이 중요하며, 이는 풍상측에 위치한 구조물을 통과하는 유체가 발생시키는 후류영향을 최소화시키는 것과 연관이 있다. 후류효과 예측성의 정확도는 이를 적절히 모의할 수 있는 후류모델과 모델링 기법에 의해 결정되어지며, 특히 산악 및 다도해지역과 같은 복잡지형에서는 고해상도 기반의 정확한 후류예측이 필수적으로 요구된다. 이에 본 논문에서는 상용 CFD 모델인 WindSim을 활용하여 국내 산악 복잡지형에 위치한 육상풍력단지 예정지의 후류모델별 민감도 분석을 통해 후류확산 형태를 분석하고 향후 복잡지형 풍력발전 프로젝트의 기초연구 자료로 활용하고자 한다.

동작 기반 Autonomous Emotion Recognition 시스템: 감정 유도 자극에 따른 신체 맵 형성을 중심으로 (Motion based Autonomous Emotion Recognition System: A Preliminary Study on Bodily Map according to Type of Emotional Stimuli )

  • 배정은;정면걸;조영욱;김형숙;김광욱
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제29권3호
    • /
    • pp.33-43
    • /
    • 2023
  • 기존 연구에 따르면 감정은 신체 감각 및 신체 움직임과 같은 신체적 변화에 영향을 주고, 감정 자극에 따라 다르게 나타난다고 알려져 있다. 그러나, 감정의 자극에 따른 신체 감각 및 신체 움직임의 활성화 정도 및 Autonomous emotion recognition(AER) 시스템의 성능에 미치는 영향에 대한 연구는 아직 알려져 있지 않다. 본 연구에서는 20명의 피험자를 대상으로 3가지 종류의 감정 자극(단어, 사진, 영상)을 활용하여 AER 시스템에 미치는 영향을 연구하였다. 측정 변인으로는 정서적 반응, 컴퓨터 기반 자가 보고, Motion Capture 장비를 통해 측정한 신체 움직임을 활용하였다. 본 연구의 결과를 통하여 영상 자극이 다른 자극에 비해 더 많은 신체 움직임을 유도하는 것을 확인하고, 영상 자극을 통해 수집한 신체적 특이점이 AER을 위한 분류 정확도 역시 가장 높음을 확인하였다. 신체 움직임을 기반으로 한 감정적 특이점은 행복, 놀람, 분노, 중립 등에서 감정 유도 자극의 종류에 따라 비슷한 패턴이 나타남을 확인하였다. 본 연구의 결과는 향후 신체적 변화를 기반으로 한 AER 시스템 연구에 기여할 수 있을 것으로 기대된다.

Frequency Ratio와 Evidential Belief Function을 활용한 산사태 유발에 대한 환경지리적 민감성 분석과 검증 - 2013년 춘천 산사태를 중심으로 - (Analysis and Validation of Geo-environmental Susceptibility for Landslide Occurrences Using Frequency Ratio and Evidential Belief Function - A Case for Landslides in Chuncheon in 2013 -)

  • 이원영;성효현;안세진;박선기
    • 한국지형학회지
    • /
    • 제27권1호
    • /
    • pp.61-89
    • /
    • 2020
  • The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.

터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안 (Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face)

  • 추엔 팜;신휴성
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.508-518
    • /
    • 2023
  • 이 논문은 LiDAR 스캔 또는 사진측량 기술에 의해 재구성된 3D 디지털 모델을 기반으로 터널 벽면의 불연속면을 자동으로 매핑하는 새로운 접근 방식을 제안한다. 본 제안에서는 U-Net이라 불리는 딥러닝 시맨틱 영역분할 모델을 사용하며, 터널 막장면의 3D 지형 모델에서 불연속면 영역을 식별해 낸다. 제안된 딥러닝 모델은 투영된 RGB 이미지, 면의 깊이 이미지 및 국부적인 면의 표면 속성 이미지(즉, 법선 벡터 및 곡률 이미지)를 포함한 다양한 정보를 종합 학습하여 기본 3차원 이미지에서 불연속면 영역을 효과적으로 분할한다. 이후 영역분할 결과는 면의 깊이 맵과 투영 행렬을 사용하여 3D 모델로 다시 투영시키고, 3D 공간 내에서 불연속면의 위치 및 범위를 정확하게 표현한다. 영역분할 모델의 성능은 영역 분할된 결과를 해당 지면 실측 값과 비교함으로써 평가하였으며, IoU(intersection-over-union) 값이 약 0.8 정도로 나타나 영역분할 결과의 높은 정확성을 확인하였다. 여전히 학습데이터가 제한적 이었음에도 불구하고, 제안 기법은 3D 모델의 점군 데이터를 불연속면의 유사군으로 그룹화하기 위해 전 막장면의 법선 벡터와 클러스터링과 같은 비지도 학습기반 알고리즘에만 의존하던 기존 접근 방식의 한계의 극복 가능성을 보여주었다.

UAV와 LiDAR를 활용한 토석채취지의 시계열 변화 분석 (Time-series Change Analysis of Quarry using UAV and Aerial LiDAR)

  • 박동환;심우담
    • 한국지리정보학회지
    • /
    • 제27권2호
    • /
    • pp.34-44
    • /
    • 2024
  • 최근 기후변화로 인한 이상기후로 인해 홍수, 산사태, 토사 유출과 같은 자연재난의 피해가 급증하고 있다. 우리나라는 국토의 63% 이상이 산지라는 지형적 특성 때문에 사면 재해에 취약하며, 특히, 토석채취지는 소단형성 과정에서 흙과 암석을 채굴하기 때문에 산사태가 발생할 확률이 높으며, 사업장 내부 뿐만 아니라, 외부까지 재해발생 위험이 높은 지역이다. 이에 따라, 본 연구는 토석채취지의 모니터링을 위해 UAV와 항공LiDAR를 활용하여 DEM을 구축하고 시계열 변화 분석을 수행하였으며, 토석채취지 모니터링을 위한 최적의 DEM 구축방법을 제안하였다. DEM 구축을 위해 UAV와 LiDAR 기반 Point Cloud 구축하고 Aggressive Classification(AC), Conservative Classification(CC), Standard Classification(SC) 등 세가지 알고리즘을 활용하여 지면부를 추출하였다. 알고리즘에 따라 구축한 UAV 및 LiDAR기반 DEM은 수치지형도 기반 DEM과의 비교를 통해 정확도를 평가하였다. 정확도 평가 결과, 알고리즘 방법간의 높이 차는 최대 1 m 내외로 차이가 거의 없었다. 또한, 음영기복도를 활용한 지면부의 질감을 시각적 비교해보았을 때 CC 알고리즘의 성능이 가장 우수하였으며, 산림지역에서 LiDAR 기반 DEM이 높은 정확도를 보였다. 구축한 최적의 DEM을 통해 토석채취지의 시계열 변화량을 비교한 결과, 토석채취지역, 소단 형성지역 등 시계열 변화에 따른 토석채취지의 변화지역 탐지가 가능하였다.

머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구 (Mapping Mammalian Species Richness Using a Machine Learning Algorithm)

  • 김지영;이동근;김은섭;최지영;전윤호
    • 환경영향평가
    • /
    • 제33권2호
    • /
    • pp.53-63
    • /
    • 2024
  • 생물다양성은 환경영향평가 제도의 목표에 중요한 부문으로, 개발대상지 입지 선정, 주변 환경 파악 및 교란으로 인한 생물종 영향 등에서 활용되고 있다. 환경영향평가 분야에서 새로운 기술과 모델을 활용하여 생물다양성을 보다 정확하게 평가하고 예측하는 방안에 대한 연구가 많이 진행되고 있다. 비록 현장, 문헌조사를 통한 데이터를 바탕으로 종 풍부도 지수를 평가하고 있으나, 현장 데이터는 시·공간적으로 미흡하므로 고해상도의 종 풍부도 매핑을 통한 기초자료를 활용함으로서, 모니터링 실효성 문제 해결이 필요하다. 따라서 본 연구에서는 제4차 전국자연환경조사 데이터와 환경변수를 바탕으로 Random forest 모델을 활용하여 종 분포모형을 개발하였다. 해당 모델은 24종의 포유류 종 분포 매핑 결과를 species richness index를 활용하여 100m 해상도의 종 풍부도 매핑 결과를 도출하였다. 연구 결과, 종 분포모형은 평균 0.82의 AUC값으로 우수한 예측 정확도를 보였다. 또한, 전국자연환경조사 데이터와 비교결과, 고 해상도의 종 풍부도 매핑 결과의 종 풍부도 분포는 정규분포의 형태를 가지고 있어 환경영향평가에서의 기초자료로 사용함에 있어 신뢰성이 높다. 본 연구의 분석결과는 추후 도시개발과 사업을 함에 있어 생물다양성 평가, 서식지 보전 등에 새로운 참고자료로 활용될 수 있을 것으로 사료된다.