• Title/Summary/Keyword: manure fertilizer

Search Result 684, Processing Time 0.022 seconds

Effect of Virus-free Plant and Subsoiling Reversion Soil for Reduction of Injury by Continuous Cropping of Sweet Potato (고구마 연작장해 경감을 위한 바이러스 무병묘 재배와 심토반전 효과)

  • Song, Hae-Ahn;Kim, Kab-Cheol;Lee, Seung-Yeob
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.3
    • /
    • pp.254-261
    • /
    • 2012
  • To reduce the injury by continuous cropping of sweet potato (Ipomoea batatas (L.) Lam.), the farmer's plant and virus-free plant were cultivated with the density of $70{\times}25cm$ (June 10, 2011) in continuous cropping soil (CCS) and subsoiling reversion soil (SRS). Fertilizer was applied at the rates of 55-63-156 $kg\;ha^{-1}$ ($N-P_2O_5-K_2O$) and 10 $ton\;ha^{-1}$ of cattle manure in CCS, and it was applied the 50% increased cattle manure compost and nitrogen in DRS. Symptoms of viral infection were revealed in the farmer's plant at 30 days after planting, but there were no symptoms in virus-free plant. The yield of virus-free plant was more increased 15% and 10.5% than that of farmer's plant in DRS and CCS, respectively. The yield of sweetpotato in SRS was more increased 8.8% and 3.2% in farmer's plant and virus-free plant compared to CCS, respectively. In DRS, the rate of marketable tuber of virus-free plant was increased by 80% compared to the farmer's plant (60.1%). The virus-free plant was produced the tuber with more brilliant peel color and well-formed shape compared to the farmer's plant. The increased yield of virus-free plant and in SRS soil condition showed a positive relationship (p=0.05) with the number of leaf per plant at 30 days and the number of branch per plant at 120 days after planting. The results showed that the early growth after planting was very important for the development of storage root. Therefore, the deep-subsoil reversion and cultivation of virus-free plant could be reduced the injury by continuous cropping of sweet potato, and increased farm income.

Effect of Aeration Mechanism on Livestock Manure Liquid Fertilization (폭기형태가 돈분뇨 액비 부숙특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Khan, Modabber Ahmed;Kim, Chang-Hyun;Lee, Dong-Hyun;Choi, Dong-Yoon;Yu, Yong-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.703-713
    • /
    • 2012
  • Three types of aeration system were installed in experimental liquid fertilization tanks to investigate the change of characteristics of pig slurry used as a raw material for making livestock liquid fertilizer. The aeration systems of the reaction tanks were composed of three major part: the air suppling part (blower), the air pipe part, and the air diffuser part. In the first tank (reactor A), the air was supplied from the bottom of the reaction tank through air pipe system connecting air diffuser with commercial ordinary blower. In the second tank (reactor B), the air diffuser was located 10cm above the bottom of the reactor. In the third tank (reactor C), the pure air was supplied with circulating pjg slurry. The oxygen content of pure air was about 90%. The pure air was mixed with pig slurry by mechanically in the air suppling part (blower) and the air pipe part. The agitation effect was highest in the reactor C than other reactors. The contents of SS, COD, T-N and T-P of each samples collected at middle part of all reactors were 8,500, 4,188, 694 and 422mg/L; 9,000, 4,247, 813 and 356mg/L; 8,667, 6,910, 973 and 269mg/L, respectively.

Inhibition of in Vitro Growth of Three Soil-borne Turfgrass Diseases by Antagonistic Bacteria from Composted Liquid Manure (가축분뇨액비의 길항미생물에 의한 토양전염성 병원균의 생육억제 효과)

  • Ryu, Ju Hyun;Shim, Gyu Yul;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.879-886
    • /
    • 2014
  • This study was conducted to test in vitro the antagonistic effect of composted liquid manure (CLM) against soil-borne turfgrass pathogenic fungi, Rhizoctonia solani AG-2-2 (IIIB) (brown patch), R. solani AG-2-2 (IV) (large patch), and Sclerotinia homoeocarpa (dollar spot) for environmentally friendly turfgrass management. CLMs were collected from 9 livestock excretion treatment facilities around the country including Gunwi (GW), Hapcheon (HC), Hoengseong (HS), Icheon (IC), Iksan (IS), Muan (MA), Nonsan (NS), and Yeoju (YJ). CLMs of IC, GW, and IS showed s ignificant (p < 0.05) mycelium growth inhibition that was 17.8%, 20.4%, and 48.0% against R. solani AG-2-2 (IIIB), R. solani AG-2-2 (IV), and S. homoeocarpa, respectively. A t otal of 110 bacterial isolates were obtained from the CLMs that showed antagonistic effects. Among them, 5, 4, and 10 microbe isolates showed promising antifungal activity against mycelium growth of R. solani AG-2-2 (IIIB), R. solani AG-2-2 (IV), and S. homoeocarpa, respectively. The bacterial isolates ICIIIB60, GWIV70, and ISSH20 effectively inhibited the mycelial growth of three soil-borne turfgrass pathogens. Selected bacterial isolates were identified as Alcaligenes sp., Bacillus licheniformis Ab2, and B. subtilis C7-3 through 16s rDNA gene sequence analysis. Among 5 fungicides, the most compatible fungicide with ICIIIB60, GWIV70, and ISSH20 was tebuconazol, toclofos-methyl and toclofos-methyl, respectively. These findings suggested that CLMs could be effectively used not only as organic liquid fertilizer sources but also as biological control agents for soil-borne turfgrass diseases such as brown patch, large patch, and dollar spot.

Characteristics of Growth and Germination of Salicornia herbacea L. for the Soil salinity and Manure Condition (토양염분.시비 조건에 따른 퉁퉁마디 생장 및 발아 특성)

  • Jo, Yeong-Cheol;Lee, Kyeong-Sik;Chon, Song-Mi;Byun, Do-Seung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.2
    • /
    • pp.100-108
    • /
    • 2002
  • This experiment was carried out to investigate the cultivation condition of soil salinity, manure and to find out the cultivation capability of Salicornia herbacea. The optimal growth condition of soil salinity was between 1% and 4%. The growth of groups for fertilization was significantly better than control group. Salicornia herbacea grew very up from 7 kg/l0a to 9 kg/l0a for N, 12 kg/l0a for P and the K-fertilizer group was better than control group but there was not significantly different among the conditions of K-concentration. The germination was good from $0{\textperthousand}\;to\;5{\textperthousand}$ for salinity, from $20^{\circ}C\;to\;30^{\circ}C$ for temperature. On the experiment cultivation, the production by hill seeding was $5.40{\sim}5.90 kg/m^2$ and was significantly higher than the yield by broadcast sowing which was $4.01{\sim}4.20 kg/m^2$. The production by hill seeding was 2.7 times than natural production and the production by broadcast sowing 1.9 times.

Performance of Mixed Cropping of Barley and Hairy Vetch as Green Manure Crops for Following Corn Production

  • Shim, Kang Bo;Kim, Min Tae;Kim, Sung Gook;Jung, Kun Ho;Jeon, Weon Tai;Shin, Su Hyun;Lee, Jae Un;Lee, Jong Ki;Kwon, Young Up
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.160-165
    • /
    • 2018
  • BACKGROUND: Mixed cropping of legume and grass was effective system in view point of providing organic matter and nitrogen or reducing the nitrogen starvation of following crop. The relation of the change of N and P constituents depending on the cropping types and those effects on the growth and nutrient uptake of the following crop were observed. METHODS AND RESULTS: Three cropping types, hairy vetch mono cropping, barley mono cropping, and mixed cropping of hairy vetch and barley were applied. Soil properties, growth characteristics, and nitrogen production of green manure crops were observed. In additions, the effect of cropping types on the growth pattern of corn as the following crop was observed. In the mixed cropping system, creeping type hairy vetch climbed to the erect type barely for light utilization resulting in improvement of light interception rate and higher LAI (Leaf Area Index) than in mono cropping. Mixed cropping showed higher biomass production and soil nitrogen availability among the cropping types, indicating relatively much more nutrient supply and higher yield production of following crop. CONCLUSION: Mixed cropping showed relatively higher LAI (dry matter) mainly because of intense competition for light utilization usually after flowering stage. Mixed cropping also showed relatively higher yield of corn, the following crop rather than other types, mainly due to the more biomass production potential and higher N and P production ability. Therefore, mixed cropping was adaptable method to reduce or replace chemical fertilizer application for environmentally-friendly agriculture.

Analysis of Commercial Organic Compost Manufactured with Livestock Manure (국내 유통중인 가축분퇴비의 품질 특성)

  • Kim, Myung-Sook;Kim, Seok-Cheol;Park, Seong-Jin;Lee, Chang-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.21-29
    • /
    • 2018
  • The contents of total nitrogen(T-N), phosphate($T-P_2O_5$), and potash($T-K_2O$) are important factors to determine the application rate of the livestock compost to prevent nutrients accumulation and maintain their appropriate levels in arable lands. The concentrations of nutrient, organic matter, salt, water content, heavy metal in livestock compost in circulation were investigated with 659 samples from 2016 to 2017. In order to investigate the fluctuation nutrient contents of livestock composts with the same product name, 19 samples were collected and analyzed T-N, and $T-P_2O_5$, and $T-K_2O$ concentration during two years. The mean levels of T-N, $T-P_2O_5$, and $T-K_2O$ in livestock composts of from 2016 to 2017 were 1.73%, 1.88%, and 1.66%, respectively. The average contents of organic matter, water, and salt were 38.9%, 40.9%, and 1.2%, respectively. There were found that the maximum concentrations of Cr, Ni, Cu, and Zn in some livestock composts were exceeded the criteria of the official standard of commercial fertilizer. The maximum variation coefficient of T-N, $T-P_2O_5$ and $T-K_2O$ content of livestock composts was found to be 24%, 27%, and 50% on average, respectively. In order to manage the nutrients in agricultural soils, it will be reasonable that the error range of T-N and $T-P_2O_5$ content in livestock composts should be recommended to be 27% in mean as variation coefficient in case of displaying the nutrient element in liverstock compost.

Effect of Temperature Condition on Nitrogen Mineralization of Organic Matter and Soil Microbial Community Structure in non-Volcanic Ash Soil (온도가 유기물의 질소무기화와 미생물 군집구조에 미치는 영향)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Kim, Seong-Cheol;Moon, Doo-Gyung;Koh, Sang-Wook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.377-384
    • /
    • 2012
  • This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community in non-volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles showed that was different significantly according to incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. Principal component analysis using PLFA profiles showed that microbial community structures were composed differently by temperature factor at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$). In conclusion, Soil microbial community structure showed relative sensitivity and seasonal changes as affected by temperature and organic matter type.

Studies on the Nutritional Physiology of Soybeans -2. Morphological Variation of Nitrogen with the Fertilizational Period (대두(大豆)의 영양생리(營養生理)에 관(關)한 연구(硏究) (제(第) 2보(報)) -시비시기(施肥時期)에 따른 질소(窒素)의 형태변화(形態變化))

  • Kang, Y.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.81-87
    • /
    • 1968
  • It has been made clear that there exist a definite rhythm in the accumulative process of carbohydrates of soybeans, and that there is a great variation in nitrogen metabolism. In spite of earlier or later manuring, it is possible to make use of the above stated conclusion. But in the case of later manuring, there is so short a time of growth before harvest, resulting in the lack of normal growth and in a great effect upon harvest. In the general terms, the first half period of growth may be called that of nitrogen assimilation, and the late half, that of carbohydrate assimilation. It has delayed comparatively distinction between these periods whether manuring was done earlier or later. In other words, the lack of carbohydrates in the first half period of growth has been found to deter the process of protein synthesis. And the lack of protein in a body in the latter half period of growth has been found to weaken photosynthesis that should be active, resulting in the decrease of harvest. Consequently, lack of protein in the body during the period of pod adhesion definitely brought about lack of growth in the latter period of growth. It follows, therefore, that in order to increase harvest, it is necessary to manure comparatively in the early period, and that contents of various forms of nitrogen.

  • PDF

Comparison of Biological Characteristics on the Organic Waste-treated Lysimeter Soil by RFLP, PLFA, and CLSU (RFLP, PLFA, CLSU를 이용한 폐기물연용토양의 토양미생물 특성 평가 비교)

  • Jang, Kab-Yeul;Weon, Hang-Yeon;Lee, Kang-Hyo;Kwon, Sun-Ik;Kong, Won-sik;Suh, Jang-sun;Sung, Jae-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.415-418
    • /
    • 2008
  • The application of sludge wastes into agricultural fields has been increasing annually in Korea. In particular, sewage sludge application has been widely accepted in decades. Sewage sludge application aid in the recycling of essential nutrients and act as a source of organic matter improving the structure and water-holding properties of the soil. The efficient use of sludge wastes, however, requires an individual assessment of waste products. This study assessed the biological characteristics of organic waste-treated lysimeter soils and develop its indicator to assess the soil health of organic waste-treated lysimeter soils. Several analytical techniques more recently developed such as restriction fragment length polymorphism (RFLP), phospholipid fatty acid (PLFA), and community level substrate utilization (CLSU) fingerprints allow for detailed analyses of soil microbial communities. PLFA and RFLP was, therefore, used in the study to characterize the microbial communities in soil without the need to isolate individual fungi and bacteria. PLFA, RFLP and CLSU have been utilized to assess microbial characteristics of the lysimeter soils with four different sludge wastes for eight consecutive years. Each of these methods was analyzed for a different aspect of soil microbial characteristics. The study would disclose those methods yielded highly reproductive results for each soil and allow distinguishing the soils based on the structures of specific geneand PLFA-pools more than CLSU fingerprints. PLFA methods, especially, revealed the same relative similarities of the treated soils based on cluster analysis of the biological characteristics. Pig manure compost-treated soil, however, was only the same relative resemblance among the three methods. These results indicated that PLFA easily assessed the biological soil characterization.

Effect of Temperature Condition on Nitrogen Mineralization and Soil Microbial Community Shift in Volcanic Ash Soil (온도가 화산회토양의 질소무기화와 미생물군집이동에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Koh, Sang-Wook;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.467-474
    • /
    • 2012
  • This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community structure in volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles were different significantly caused by incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. But cy19:0/$18:1{\omega}7c$ ratio increased both FWC and PMC treatment. Principal component analysis using PLFA profiles showed that microbial community structure made up clearly at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$) by temperature factor. As incubating time passed, microbial community structure shifted gradually.