• Title/Summary/Keyword: manure

Search Result 1,718, Processing Time 0.034 seconds

Influence of a chemical additive on the reduction of highly concentrated ammonium nitrogen(NH4+-N) in pig wastewater (양돈 폐수로부터 고농도 암모니아성 질소의 감소를 위한 화학적 첨가제의 영향)

  • Su Ho Bae;Eun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.267-274
    • /
    • 2022
  • Excess nitrogen (N) flowing from livestock manure to water systems poses a serious threat to the natural environment. Thus, livestock wastewater management has recently drawn attention to this related field. This study first attempted to obtain the optimal conditions for the further volatilization of NH3 gas generated from pig wastewater by adjusting the amount of injected magnesia (MgO). At 0.8 wt.% of MgO (by pig wastewater weight), the volatility rate of NH3 increased to 75.5% after a day of aeration compared to untreated samples (pig wastewater itself). This phenomenon was attributed to increases in the pH of pig wastewater as MgO dissolved in it, increasing the volatilization efficiency of NH3. The initial pH of pig wastewater was 8.4, and the pH was 9.2 when MgO was added up to 0.8 wt.%. Second, the residual ammonia nitrogen (NH4+-N) in pig wastewater was removed by precipitation in the form of struvite (NH4MgPO4·6H2O) by adjusting the pH after adding MgO and H3PO4. Struvite produced in the pig wastewater was identified by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis. White precipitates began to form at pH 6, and the higher the pH, the lower the concentration of NH4+-N in pig wastewater. Of the total 86.1% of NH4+-N removed, 62.4% was achieved at pH 6, which was the highest removal rate. Furthermore, how struvite changes with pH was investigated. Under conditions of pH 11 or higher, the synthesized struvite was completely decomposed. The yield of struvite in the precipitate was determined to be between 68% and 84% through a variety of analyses.

Distribution and Frequency of SSR Motifs in the Chrysanthemum SSR-enriched Library through 454 Pyrosequencing Technology (국화 SSR-enriched library에서 SSR 반복염기의 분포 및 빈도)

  • Moe, Kyaw Thu;Ra, Sang-Bog;Lee, Gi-An;Lee, Myung-Chul;Park, Ha-Seung;Kim, Dong-Chan;Lee, Cheol-Hwi;Choi, Hyun-Gu;Jeon, Nak-Beom;Choi, Byung-Jun;Jung, Ji-Youn;Lee, Kyu-Min;Park, Yong-Jin
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.546-551
    • /
    • 2011
  • Chrysanthemums, often called mums or chrysanths, belong to the genus Chrysanthemum, which includes about 30 species of perennial flowering plants in the family Asteraceae. We extracted DNA from Dendranthema grandiflorum ('Smileball') to construct a simple sequence repeat (SSR)-enriched library, using a modified biotin-streptavidin capture method. GS FLX (Genome Sequencer FLX System which provides the flexibility to perform the broad range of applications) sequencing (at the 1/8 run specification) resulted in 18.83 mega base pairs (Mbp) with an average read length of 280.06 bp. Sequence analyses of all SSR-containing clones revealed a predominance of di-nucleotide motifs (16,375, 61.5%) followed by tri-nucleotide motifs (6,616, 24.8%), tetra-nucleotide motifs (1,674, 6.3%), penta-nucleotide motifs (1,283, 4.8%), and hexa-nucleotide motifs (693, 2.6%). Among the di-nucleotide motifs, the AC/CA class was the most frequently identified (93.5% of all di-nucleotide types), followed by the GA/AG class (6.1%), the AT/TA class (0.4%), and the CG/GC class (0.03%). When we analyzed the distribution of different repeat motifs and their respective numbers of repeats, regardless of the motif class, of 100 SSR markers, we found a higher number of di-nucleotide motifs with 70 to 80 repeats; we also found two di-nucleotide motifs with 83 and 89 repeats, respectively, but their product lengths were within optimum size (297 and 300 bp). In future work, we will screen for polymorphisms of possible primer pairs. The results will provide a useful tool for assessing molecular diversity and investigating the population structure among and within Chrysanthemum species.

"Jungmo2510", Forage Rye Cultivar of Early-Heading and Resistance to Lodging (조숙성이고 도복에 강한 사일리지용 호밀 품종 '중모2510' 개발)

  • Han, O.K.;Ku, J.H.;Ahn, J.W.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2019
  • "Jungmo2510", a rye cultivar, Secale cereal L., was developed by National Institute of Crop Science, RDA in 2015. It was developed from open pollination from within 10 rye cultivars or lines including "Chochun" in 1995. The line "SR95POP-S1-523-1-5-5-4-7-3-B-16-3-19" was selected for its excellent agronomic appearance and was placed in yield trials for two years from 2011 to 2012. The line was designated "Homil55" and was placed in regional yield trials at the four locations around Korea from 2013 to 2015, during which time the name "Jungmo2510" was given. This cultivar is an erect plant type and leaves of short and broad size with a green color, a yellow colored, medium-diameter culm, and a yellowish brown-colored, medium-size grain. The heading date of "Jungmo2510" was April 16, which were 2 days earlier than that of "Gogu". "Jungmo2510" also showed similar to winter hardiness and greater resistance to lodging compared to those of the check cultivar. Over three years, the average dry matter yield of "Jungmo2510" was 802 kg 10a-1 , which was harvested in late April and was lower than that of the check cultivar "Gogu" (825 kg). The seed productivity of "Jungmo2510" was approximately 481 kg 10a-1 , which was 2.4% less than that of the check. "Jungmo2510" was higher to than "Gogu" in term of protein content (9.1% and 8.0%, respectively), total digestible nutrients(TDN)(57.5% and 55.5%, respectively), and TDN yield 10a-1(419 kg and 392 kg, respectively). This cultivar is recommended as a fall sowing crop in areas where the average daily minimum-mean temperatures are higher than -12 ℃ in January, and as a winter crop for whole-crop forage before the planting of rice or green manure around Korea.

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.

Evaluation of Air Quality in the Compost Pilot Plant with Livestock Manure by Operation Types (축분 퇴비화시스템 운용방식에 따른 실내 대기오염 평가)

  • Kim, K.Y.;Choi, H.L.;Ko, H.J.;Kim, C.N.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.283-294
    • /
    • 2004
  • Air quality in the livestock waste compost pilot plant at the Colligate Livestock Station was assessed to quantity the emissions of aerial contaminants and evaluate the degree of correlation between them for different operation strategies; with the ventilation types and agitation of compost pile, in this study. The parameters analyzed to reflect the level of air quality in the livestock waste compost pilot plant were the gaseous contaminants; ammonia, hydrogen sulfide, and odor concentration, the particulate contaminants; inhalable dust and respirable dust, and the biological contaminants; total airborne bacteria and fungi. The mean concentrations of ammonia, hydrogen sulfide, and odor concentration in the compost pilot plant without agitation were 2.45ppm, 19.96ppb, and 15.8 when it was naturally ventilated, and 7.61ppm, 31.36ppb, and 30.2 when mechanically ventilated. Those with agitation were 5.50ppm, 14.69ppb, and 46.4 when naturally ventilated, and 30.12ppm, 39.91ppb, and 205.5 when mechanically ventilated. The mean concentrations of inhalable and respirable dust in the compost pilot plant without agitation were 368.6${\mu}g$/$m^3$ and 96.0${\mu}g$/$m^3$ with natural ventilation, and 283.9${\mu}g$/$m^3$ and 119.5${\mu}g$/$m^3$ with mechanical ventilation. They were also observed with agitation to 208.7${\mu}g$/$m^3$ and 139.8${\mu}g$/$m^3$ with natural ventilation, and 209.2${\mu}g$/$m^3$ and 131.7${\mu}g$/$m^3$ with mechanical ventilation. Averaged concentrations of total airborne bacteria and fungi in the compost pilot plant without agitation were observed to 28,673cfu/$m^3$ and 22,507cfu/$m^3$ with natural ventilation, and 7,462cfu/$m^3$ and 3,228cfu/$m^3$ with mechanical ventilation. They were also observed with agitation to 19,592cfu/$m^3$ and 26,376cfu/$m^3$ with the natural ventilation, and 18,645cfu/$m^3$ and 24,581cfu/$m^3$ with the mechanical ventilation. It showed that the emission rates of gaseous pollutants, such as ammonia, hydrogen sulfide, and odor concentration, in the compost pilot plant operated with the mechanical ventilation and with the agitation of compost pile were higher than those with the natural ventilation and without the agitation. While the concentrations of inhalable dust and total airborne bacteria in the compost pilot plant with the natural ventilation and with the agitation, the concentrations of respirable dust and total airborne fungi in the compost pilot plant with the mechanical ventilation and agitation were higher than those with the natural ventilation and without the agitation of compost pile. It was statistically proved that indoor temperature and relative humidity affected the release of particulates and biological pollutants, and ammonia and hydrogen sulfide were believed primary malodorous compounds emitted from the compost pilot plant.

Rationalization of Fertilizing and Development of Fetilizer (시비(施肥)의 합리화(合理化)와 비종개발(肥種開發))

  • Lim, Sun-Uk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.1
    • /
    • pp.49-50
    • /
    • 1982
  • The objective of this paper is to review the changes in fertilizer use pattern and to discuss some aspects of the fertilizer development in Korea. Fertilizer consumption in Korea have steadily increased to triple the application rates of N, P and K during the 15 years from 1965 to 1980, and Korea became one of the countries which apply fertilizers at the highest rate. The ratio of N: $P_2O_5$: $K_2O$ in fertilizer consumption changed from 55.4 : 31.4 : 13.1 in 1965 to 54.0 : 23.8 : 22.2 in 1980. It can be said that Korean farmers practise a balanced fertilization at least in view of fertilizer consumption as compared to other developing countries. However, differences in soil properties, crops, and climate varying as region were not reflected on fertilization. In the technological development of fertilizer, the chemical form and composition of the fertilizer as well as the suitability to the specific crops must be taken into consideration for the efficient use of fertilizers. Although organic fertilizers and manure are accepted as minor element suppliers, it is necessary to add minor elements into chemical fertilizers on the industrial process. Industrial waste may be used for the agricultural production as a measure of pollution control providing careful study on the waste.

  • PDF

Studies on Dairy Farming Status, Reproductive Efficiencies and Disorders in New Zealand (I) A Survey on Dairy Farming Status and Milk Yield in Palmerston North Area (뉴질랜드 (Palmerston North) 의 낙농 현황과 번식 및 번식장해에 관한 연구(I) Palmerston North 지역의 낙농 현황과 우유 생산량에 관한 조사 연구)

  • 김중계;맥도날드
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2000
  • Eighty dairy farms in Palmers ton North area in New Zealand were surveyed on 1) general characteristics (10 Questions), 2) milk yield and feed supplementary (7 questions), 3) reproductive efficiencies (12 questions) and 4) reproductive disorders (12 questions) by mail questions from February to July, 1998. Among those 4 items from 38 dairy farms (47.5%), especially in items 1) and 2), overall dairy farming situation, supplementary feeding and milk yields were surveyed and analyzed for Korean dairy farmers (especially in Cheju island) to have better understanding or higher economical gains. The results were as follows. 1. In dairy experience, 21 (45%) among 38 dairy farms surveyed were answered that farming less than 15 years, 15~19 year, 20~25 years and over 26 years experience were 3 (7.9%), 7 (18.4%), 6 (15.8%) and 5 (13.2%) which generally showed longer experience compare to Korean dairy farming situation. In survey of labour input and business goal of dairy farming, self-managing farms, sharemilkers, unpaid family manpowering farms, manager running farms, farms with hired worker, farms with part time helper and other type was 21 (55.3%), 10 (26.3%), 2 (3.5%), 3 (5.3%), 18 (31.6%), 2 (3.5%), and 1 (1.8%), respectively. 2. Analyzing pasture and tillable land, pasture according to feeding scale (200, 300 and 400 heads) were 56, 90 and 165.3 ha, and tillable lands were 51, 78 and 165 ha which showed some differences among feeding scale. In recording methods in 38 farms replied, 36 (95%) dairy handbook and 23 (70%) dual methods taking farms were higher than that of 10 (26.3%) computer and 15(39.5%) well-recorder methods. 3. Dairy waste processing facilities in environmental field were almost perfect except of metropolitan area, and so no problem was developed in its control so far. Hence, 26 farm (68.4%) of pond system was higher rather than those in 8 (21.2%) of using as organic manure after storing feces of dairy cattle, 1(2.6%) bunker system and 3 (7.9%) other type farms. 4. In milking facilities, 33 farms (86.9%) of Harringbone types were higher than those in 3 (7.9%) of Walkthrough types, 1 (2.6%) of Rotary system and other types. Although the construction facilities was not enough, this system show the world-leveled dairy country to attempted to elevate economic gains using the advantage of climatic condition. 5. In milking day and yearly yield per head, average 275 milking days and 87 drying days were longer than that of 228 average milking days in New Zealand. Annual total milk yield per head and milk solid (ms) was 3,990 kg and approximately 319 kg. Dairy milk solid (ms) per head, milk yield, fat percentage was 1.2 kg, 15.5 kg and average 4.83% which was much higher than in other country, and milk protein was average 3.75%. 6. In coclusion, Palmerstone North has been a center of dairy farming in New Zealand for the last 21 years. Their dairy farming history is 6~9 year longer than ours and the average number of milking cows per farm is 355, which is much greater than that (35) of Korea. They do not have dairy barn, but only milking parlors. Cows are taken care of by family 0.5 persons), are on a planned calving schedule in spring (93%) and milked for 240~280 days a year, avoiding winter. Cows are dried according to milk yield and body condition score. This management system is quite different from that of Korean dairy farms. Cows are not fed concentrates, relying entirely on pasture forages and the average milk yield per cow is 3,500 kg, which is about 1/2 milk yield of Korean dairy farms. They were bred to produce high fat milk with an average of 4.5%. Their milk production cost is the lowest in the world and the country's economy relies heavily on milk production. We Korean farmers may try to increase farming size, decreasing labor and management costs.

  • PDF