• Title/Summary/Keyword: manufacturing-cell design

Search Result 186, Processing Time 0.021 seconds

Fundamental Study on System Design as Load Character of the capacity Small Fuel Cell Vehicle (소형연료전지 자동차의 부하특성에 따른 시스템 설계에 관한 기초연구)

  • Kim H. G.;Kang Y W.;Kim Y. S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.75-80
    • /
    • 2004
  • Feasibility of the small capacity fuel cell powered vehicle is carried out for system design with loading characteristics. The major design concepts which include battery, driving motor, and fuel cell module are analyzed and discussed for the future development. A load characteristics program is developed in order to calculate the traction power of fuel cell vehicle according to the driving courses specified. Further, the small capacity fuel cell vehicle is analyzed to determine the capacity of stack as a function of the velocity for an appropriate power required.

An integrated model of cell formation and cell layout for minimizing exceptional elements and intercell moving distance (예외적 요소와 셀간 이동거리를 최소화할 수 있는 셀 형성과 셀 배치결정 모형)

  • 윤창원;정병희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.121-124
    • /
    • 1996
  • In general, cellular manufacturing system can be constructed by the following two steps. The first step forms machine cells and part families, and the second step determines cell layout based on the result of first step. Cell layout has to be considered when cell is formed becauese the result of cell formation affects it. This paper presents a cell formation algorithm and proposes an integrated mathematical model for cell formation and cell layout. The cell formation algorithm minimizes the number of exceptional element in cellular manufacturing system. New concept for similarity and incapability is introduced, based on machine-operation incidence matrix and part-operation incidence matrix. One is similarity between the machines, the other is similarity between preliminary machine cells and machines. The incapability identifies relations between machine cells and parts. In this procedure, only parts without an exceptional element are assigned to machine cell. Bottleneck parts are considered with cell layout design in an integrated mathematical model. The integrated mathematical model determines cell layout and assigns bottleneck parts to minimize the number of exceptional element and intercell moving distance, based on linearixed 0-1 integer programming. The proposed algorithm is illustrated by using numerical examples.

  • PDF

A Study on the Optimization of Fuel-Cell Stack Design (연료 전지 냉각판의 최적 설계)

  • 홍민성;김종민
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.92-96
    • /
    • 2003
  • Feul-Cell system consists of fuel reformer, stack and energy translator. Among these parts, stack is a core part which produces electricity directly. In order to set a stack module, fabrication of appropriate stack, design of water flow path in stack and control of coolant are needed. Especially, oater or air is used as a coolant to dissipate heat. The different temperature of each electric cell after cooling affects the performance of the stack. Therefore, it is necessary that the relationship between coolant hearing rate, width of stack, properties of stack, and the shape of water flow path must be understood. For the optimal design, the computational simulation by CFD-ACE has been conducted and the resulting database has been constructed.

Network-type Cell Layout in Cellular Flexible Assembly Systems (셀형유연조립시스템에서의 네트웍형 셀배치)

  • 노인규;최형호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.63-73
    • /
    • 1996
  • With the success of flexible manufacturing systems (FMSs), flexible assembly systems (FASs) have been developed to automate factories further. As in a cellular FMS, a cellular FAS is considered as the most flexible and feasible assembly system configuration Because of the differences between manufacturing and assembly operation, the logic of cell formation and cell layout between a FMS and a FAS is not the same. Since the time for assembly operation is usually relatively short, the transfer time is thus very crucial for the performance of assembly systems. Therefore in assembly systems it is important to reduce the transfer time by sequencing operations efficiently and arranging machines like the sequences. The network-type layout is not only feasible for the machine arrangement based on operation sequences, but it has also layout flexibility. Therefore it is a reasonable layout configuration for cellular FASs. This paper presents a method for the cell layout based on the network-type layout in a cellular FAS design.

  • PDF

Integrated mathematical programming Approach of Cell formation and facility layout in cellular manufacturing (셀형제조시스템에서 셀형성과 설비배치를 통합한 수리계획모형에 관한 연구)

  • Lee Sang-Wan;Kim Hae-Sik;Cho Sung-Youl
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.2
    • /
    • pp.94-100
    • /
    • 2005
  • This paper presents the application of integrated mathematical programming approach for the design of cellular manufacturing. The proposed approach is carried out in two phases The first phase concerning exceptional elements(EEs) in cell formation and the second phase facilities layout design. This paper considers the total costs of three important costs for (1) intercellular transfer (2) machine duplication and (3) subcontracting. One of Important issue is the calculation of the number of machines considering the maximum utilization of machines and the available capacity of a machines that can be transferred between cells. Facilities layout design is considered to reflect the real field data taking in to account the operational sequence of the parts to be manufactured. The model is formulated as mixed integer programming that is employed to find the optimal solution.

A Case-Study of Implementing Lean Production System in Manufacturing Electronic Components (전자부품 생산 Line에 있어서 Lean 생산방식 적용에 대한 실증적 고찰)

  • Lee, Sang-Cheon;Wang, Jung-Il
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.468-479
    • /
    • 1999
  • Lean production system can be defined as customer(product)-oriented production system with small lot size and flow-shop layout based on the JIT(Just-in-time) principles. In this paper, we introduce a case example of implementation of the Lean product ion system for manufacturing line of electronic component which has both machine processes and manual jobs. We also investigate the issues of implementing the Lean production system with the viewpoints of layout design scheme and JIT management rules. In the layout design, we propose the cell-line which has flow-shop layout with small lot size. In the management rules, the superior cell rule is applied in order to boost the needs of kaisen up. As the results of implementing the Lean production system, production lead time is decreased from 5 days to 1.5 days and also productivity and quality level arc surprisingly increased.

  • PDF

Recent Developments of Polymer Electrolyte Membrane Fuel Cell Design

  • Wonchan Hwang;Yung-Eun Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.120-130
    • /
    • 2023
  • PEMFC has high potential for future development due to its high energy density, eco-friendliness, and high energy efficiency. When it becomes small, light and flexible, it can be competitive as an energy source for portable devices or flexible electronic devices. However, the use of hard and heavy materials for structural rigidity and uniform contact pressure transmission has become an obstacle to reducing the weight and flexibility of PEMFCs. This review intends to provide an example of the application of a new structure and material for lightweight and flexibility. As a lightweight PEMFC, a tubular design is presented and structural advantages through numerical modeling are explained. Manufacturing methods to realize the structural advantages and possibilities of tubular PEMFCs are discussed. In addition, the materials and manufacturing processes used to fabricate lightweight and flexible PEMFCs are described and factors affecting performance are analyzed. Strategies and structural improvements of light and flexible movements are discussed according to the component parts.

A Genetic Algorithm for Manufacturing Cell Design Based on Operation Sequence (공정순서에 기초한 생산셀 설계를 위한 유전 알고리즘 접근)

  • 문치웅;김재균
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.123-133
    • /
    • 1998
  • A cell design model based on operation sequence is proposed for maximizing the total parts flow within cells considering the data of Process plans for parts, Production volume, and cell size. A relationship between machines is calculated on the basis of the process plans for parts obtained from process plan sheets. Then the machines are classified into machine cells using the relationship. The model is formulated as a 0-1 integer programming and a genetic algorithm approach is developed to solve the model. The developed approach is tested and Proved using actual industrial data. Experimental results indicate that the approach is appropriate for large-size cell design problems efficiently.

  • PDF

Automated Wafer Separation from the Stacked Array of Solar Cell Silicon Wafers Using Continuous Water Jet

  • Kim, Kyoung-Jin;Kim, Dong-Joo;Kwak, Ho-Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • In response to the industrial needs for automated handling of very thin solar cell wafers, this paper presents the design concept for the individual wafer separation from the stacked wafers by utilizing continuous water jet. The experimental apparatus for automated wafer separation was constructed and it includes the water jet system and the microprocessor controlled wafer stack advancing system. Through a series of tests, the performance of the proposed design is quantified into the success rate of single wafer separation and the rapidity of processing wafer stack. Also, the inclination angle of wafer equipped cartridge and the water jet flowrate are found to be important parameters to be considered for process optimization. The proposed design shows the concept for fast and efficient processing of wafer separation and can be implemented in the automated manufacturing of silicon based solar cell wafers.

Analysis of the effect of changes in the gate design on cell size and density in Mucell injection molding (초미세 발포성형에서 게이트의 형상 변화에 따른 셀의 크기 및 밀도에 대한 영향도 분석)

  • Jae Hyuk Choi
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.64-69
    • /
    • 2023
  • This paper explores the impact of gate shape changes on the size and density of foamed cells in microcellular foam injection molding. Five different gate shapes were examined while varying the amount of nitrogen gas(N2) injected for foaming. Analysis of the results showed that while average values did not change significantly, deviation values decreased by approximately 65% for cell size and 56% for density when 3.5wt% of nitrogen gas was injected in the film gate. Further analysis was conducted to verify this phenomenon, revealing that the contact area between the gate and product had the greatest impact. Our findings indicate that to ensure uniform generation of foamed cells in microcellular foaming product design, a gate with a wide contact area should be secured.

  • PDF