• Title/Summary/Keyword: manufacturing defect

Search Result 413, Processing Time 0.021 seconds

Instrumented Impact Testing of Polymers (고분자 재료의 계장화 충격실험에 관한 연구)

  • Choi Sun-Woong;Woo Chang-Ki;Yoon Joung-Hwi
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.23-28
    • /
    • 2004
  • Impact behavior of polycarbonate in various defect state was investigated using an instrumented impact tester. A method of analyzing raw impact data was developed and successfully demonshsted the impact behavior in terms of load-displacement and energy-displacement curves. This technique was shown to be capable of separating defect no-defect initiated fractures as well as their propagation behaviors.

Instrumented Impact Testing of Polymers (고분자 재료의 계장화 충격실험에 관한 연구)

  • 우창기;이장규;윤종희;안종성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.262-267
    • /
    • 2002
  • Impact behavior of polycarbonate in various defect state was investigated using an instrumented impact fester. A mettled of analyzing raw impact data was developed and successfully demonstrated the impact behavior in terms of load-displacement and energy-displacement curves. This technique was shown to be capable of separating defect, no-defect initiated fractures as well as their propagation behaviors.

  • PDF

Variation Stack-Up Analysis Using Monte Carlo Simulation for Manufacturing Process Control and Specification

  • Lee, Byoungki
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.4
    • /
    • pp.79-101
    • /
    • 1994
  • In modern manufacturing, a product consists of many components created by different processes. Variations in the individual component dimensions and in the processes may result in unacceptable final assemblies. Thus, engineers have increased pressure to properly set tolerance specifications for individual components and to control manufacturing processes. When a proper variation stack-up analysis is not performed for all of the components in a functional system, all component parts can be within specifications, but the final assembly may not be functional. Thus, in order to improve the performance of the final assembly, a proper variation stack-up analysis is essential for specifying dimensional tolerances and process control. This research provides a detailed case example of the use of variation stack-up analysis using a Monte Carlo simulation method to improve the defect rate of a complex process, which is the commutator brush track undercut process of an armature assembly of a small motor. Variations in individual component dimensions and process mean shifts cause high defect rate, Since some dimensional characteristics have non-normal distributions and the stack-up function is non-linear, the Monte Carlo simulation method is used.

  • PDF

Test and Analysis of Triaxially Braided Composite Circular Arch under Three-Point Bending

  • Nega, Biruk F.;Woo, Kyeongsik;Lee, Hansol
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.249-257
    • /
    • 2019
  • In this paper, the buckling behavior of triaxially braided circular arch with monosymmetric open section subjected to three-point bending was studied experimentally and numerically. First, test specimens were manufactured using vacuum assisted resin transfer molding (VARTM). Then the specimen was tested under three-point bending to determine the ultimate buckling strength. Before performing the numerical analysis, effective material properties of the braided composite were obtained through micro-meso scale analysis virtual testing validated with available test results. Then linear buckling analysis and geometrically non-linear post buckling analysis, established to simulate the test setup, were performed to study the buckling behavior of the composite frame. Analysis results were compared with experimentally obtained ones for verification. The effect of manufacturing defects of tow misalignment, irregular surface and resin rich region, and uncertainties during test setup were studied using numerical models. From the numerical analyses performed it was observed that both manufacturing defect and uncertainties had effect on the buckling behavior and strength.

Evaluation of Fatigue Strength and Characteristics of Fatigue Crack Closure in SM35C Steel (중탄소강의 피로크랙 개폐구의 특성 및 피로강도의 평가)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • It is not clearly known how surface defects or inclusions of a medium carbon steel affect a fatigue strength. In this study, we used SM35C specimens with spheroidized cementite structure to eliminate dependence of micro structure of fatigue crack. The investigation was carried out by behavior of crack closure at non-propagation crack and effect of the fatigue limit according to the artificial defects size. Experimental findings are obtained as follows : (1) Fatigue crack initiation point of medium carbon steel with spheroidized cementite structure is at the surface defects. (2) Non-propagating crack length of smooth specimen is equal to the critical size of defect. (3) Considering the opening and closure behavior of fatigue crack, the defect shape results in various crack opening displacement, while it does not affects the fatigue limit level of medium carbon steel with spheroidized cementite structure. (4) The critical length of the non-propagation crack of smooth specimen is the same as critical size of defect in transient area which determines threshold condition in steel with spheroidized cementite structure.

  • PDF

Analysis of Error Rate in the Variations of Shearing Amount in Measuring the Internal Defect using a Shearography (전단간섭계를 이용한 압력용기 내부 결함 측정시 전단량 변화에 따른 오차분석)

  • Hong, Kyung-Min;Kang, Young-June;Choi, In-Young;Ahn, Yong-Jin;Yoon, Suk-Bum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.726-732
    • /
    • 2012
  • Pipe and Pressure Vessels that is used in power plant and chemical industry have many Internal Defects that is corrosion caused by the flow of fluid. These Internal Defects that have possibility of explosion are very dangerous because it can not see from the outside. This days many companys using NDT method to find an Internal Defect. Most of the NDT methods have limitations that are constraint of shape and materials. But Sheargoraphy have many advantages compared conventional NDT method. It has very fast measuring speed, non-destructive and non contacting measurement. As well as it hasn't constraint of shape and materials. As a paper on the analysis of measurement of error, the important factors were the Shearing Amount and pressure, and discovered measurement of the Internal Defect of the object by using shearography. The optimal Shearing Amount and pressure was discovered and utilized.

Automatic Visual Inspection System Development for Tarpaulin's Pinholes Defect Detection (다포린 원단의 함침 자동 검출 시스템 개발)

  • O, Chun-Seok;Lee, Hyeon-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1973-1979
    • /
    • 2000
  • Driving the need for machine vision system is growing consumer demand for quality and defect-free products. Especially it is the most important in tarpaulin's manufacturing process achieves automatically by machine vision instead of by man vision. In this paper pinholes detection is performed by using morphology algorithms. Top hat transform is one of morphology applications. This transform take high performance of defect detection in the case that unexpected changes occur in some non-uniform background. For pinholes defect, automatic visual inspection system has been developed, which was composed by a line-scan camera, illumination, a frame grabber, a motor driver and control units. This system has excellent capacity to defect pinholes to the 0.1 mm by 0.5 mm in size and to work in moving objects by maximum 20 m/min in speed.

  • PDF

The Development of Automatic Inspection System for Flaw Detection in Welding Pipe (배관용접부 결함검사 자동화 시스템 개발)

  • Yoon Sung-Un;Song Kyung-Seok;Cha Yong-Hun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.87-92
    • /
    • 2006
  • This paper supplements shortcoming of radioactivity check by detecting defect of SWP weld zone using ultrasonic wave. Manufacture 2 stage robot detection systems that can follow weld bead of SWP by method to detect weld defects of SWP that shape of weld bead is complex for this as quantitative. Also, through signal processing ultrasonic wave defect signal system of GUI environment that can grasp easily existence availability of defect because do videotex compose. Ultrasonic wave signal of weld defects develops artificial intelligence style sightseeing system to enhance pattern recognition of weld defects and the classification rate using neural net. Classification of weld defects that do fan Planar defect and that do volume defect of by classify.

Performance Advancement of Evaluation Algorithm for Inner Defects in Semiconductor Packages (반도체 패키지 내부결함 평가 알고리즘의 성능 향상)

  • Kim, Chang-Hyun;Hong, Sung-Hun;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.82-87
    • /
    • 2006
  • Availability of defect test algorithm that recognizes exact and standardized defect information in order to fundamentally resolve generated defects in industrial sites by giving artificial intelligence to SAT(Scanning Acoustic Tomograph), which previously depended on operator's decision, to find various defect information in a semiconductor package, to decide defect pattern, to reduce personal errors and then to standardize the test process was verified. In order to apply the algorithm to the lately emerging Neural Network theory, various weights were used to derive results for performance advancement plans of the defect test algorithm that promises excellent field applicability.

Properties of Defect Initiation and Fatigue Crack Growth in Manufacturing Process of Bearing Metal (베어링메탈 제조공정에 따른 결함발생 및 피로균열 전파특성)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.3-8
    • /
    • 2015
  • A study has been made on defects which are formed in manufacturing processes of engine bearing and also on fatigue crack growth behavior in each step of bearing metal manufacturing. After the first step(sinter brass powder on steel plate ; Series A) many voids are made on brass surface and its size is decreased by the second step(rolling process of sintered plate ; Series B). After the third step(re-sintering step of brass powder and rolling ; Series C) the number of voids is decreased and its type shows line. The time of fatigue crack initiation and the growth rate of fatigue crack are in order of Series A, Series B, Series C. These reasons are that void fosters the crack initiation and growth, and residual stress made by rolling process effects on the crack growth rate in Series B, C. In forming and machining processes by use of final bearing metal, crack was observed at internal corner of flange and peeling off was observed at junction between steel and brass. Owing to the above crack and peeling off, it is considered that there is a possibility of fatigue fracture during the application time.

  • PDF