• Title/Summary/Keyword: manufacturing cells

Search Result 455, Processing Time 0.027 seconds

Application of CMP Process to Improving Thickness-Uniformity of Sputtering-deposited CdTe Thin Film for Improvement of Optical Properties (스퍼터링 증확 CdTe 박막의 두께 불균일 현상 개선을 위한 화학적기계적연마 공정 적용 및 광특성 향상)

  • Park, Ju-Sun;Lim, Chae-Hyun;Ryu, Seung-Han;Myung, Kuk-Do;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.375-375
    • /
    • 2010
  • CdTe as an absorber material is widely used in thin film solar cells with the heterostructure due to its almost ideal band gap energy of 1.45 eV, high photovoltaic conversion efficiency, low cost and stable performance. The deposition methods and preparation conditions for the fabrication of CdTe are very important for the achievement of high solar cell conversion efficiency. There are some rearranged reports about the deposition methods available for the preparation of CdTe thin films such as close spaced sublimation (CSS), physical vapor deposition (PVD), vacuum evaporation, vapor transport deposition (VTD), closed space vapor transport, electrodeposition, screen printing, spray pyrolysis, metalorganic chemical vapor deposition (MOCVD), and RF sputtering. The RF sputtering method for the preparation of CdTe thin films has important advantages in that the thin films can be prepared at low growth temperatures with large-area deposition suitable for mass-production. The authors reported that the optical and electrical properties of CdTe thin film were closely connected by the thickness-uniformity of the film in the previous study [1], which means that the better optical absorbance and the higher carrier concentration could be obtained in the better condition of thickness-uniformity for CdTe thin film. The thickness-uniformity could be controlled and improved by the some process parameters such as vacuum level and RF power in the sputtering process of CdTe thin films. However, there is a limitation to improve the thickness-uniformity only in the preparation process [1]. So it is necessary to introduce the external or additional method for improving the thickness-uniformity of CdTe thin film because the cell size of thin film solar cell will be enlarged. Therefore, the authors firstly applied the chemical mechanical polishing (CMP) process to improving the thickness-uniformity of CdTe thin films with a G&P POLI-450 CMP polisher [2]. CMP process is the most important process in semiconductor manufacturing processes in order to planarize the surface of the wafer even over 300 mm and to form the copper interconnects with damascene process. Some important CMP characteristics for CdTe were obtained including removal rate (RR), WIWNU%, RMS roughness, and peak-to-valley roughness [2]. With these important results, the CMP process for CdTe thin films was performed to improve the thickness-uniformity of the sputtering-deposited CdTe thin film which had the worst two thickness-uniformities of them. Some optical properties including optical transmittance and absorbance of the CdTe thin films were measured by using a UV-Visible spectrophotometer (Varian Techtron, Cary500scan) in the range of 400 - 800 nm. After CMP process, the thickness-uniformities became better than that of the best condition in the previous sputtering process of CdTe thin films. Consequently, the optical properties were directly affected by the thickness-uniformity of CdTe thin film. The absorbance of CdTe thin films was improved although the thickness of CdTe thin film was not changed.

  • PDF

Development of a Novel Medium with Chinese Cabbage Extract and Optimized Fermentation Conditions for the Cultivation of Leuconostoc citreum GR1 (폐배추 추출물을 이용한 Leuconostoc citreum GR1 종균 배양용 최적 배지 및 배양 조건 개발)

  • Moon, Shin-Hye;Chang, Hae-Choon;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1125-1132
    • /
    • 2013
  • In the kimchi manufacturing process, the starter is cultured on a large-scale and needs to be supplied at a low price to kimchi factories. However, current high costs associated with the culture of lactic acid bacteria for the starter, have led to rising kimchi prices. To solve this problem, the development of a new medium for culturing lactic acid bacteria was studied. The base materials of a this novel medium consisted of Chinese cabbage extract, a carbon source, a nitrogen source, and inorganic salts. The optimal composition of this medium was determined to be 30% Chinese cabbage extract, 2% maltose, 0.25% yeast extract, and $2{\times}$ salt stock (2% sodium acetate trihydrate, 0.8% disodium hydrogen phosphate, 0.8% sodium citrate, 0.8% ammonium sulfate, 0.04% magnesium sulfate, 0.02% manganese sulfate). The newly developed medium was named MFL (medium for lactic acid bacteria). After culture for 24 hr at $30^{\circ}C$, the CFU/mL of Leuconostoc (Leuc.) citreum GR1 in MRS and MFL was $3.41{\times}10^9$ and $7.49{\times}10^9$, respectively. The number of cells in the MFL medium was 2.2 times higher than their number in the MRS media. In a scale-up process using this optimized medium, the fermentation conditions for Leuc. citreum GR1 were tested in a 2 L working volume using a 5 L jar fermentor at $30^{\circ}C$. At an impeller speed of 50 rpm (without pH control), the viable cell count was $8.60{\times}10^9$ CFU/mL. From studies on pH-stat control fermentation, the optimal pH and regulating agent was determined to be 6.8 and NaOH, respectively. At an impeller speed of 50 rpm with pH control, the viable cell count was $11.42{\times}10^9(1.14{\times}10^{10})$ CFU/mL after cultivation for 20 hr - a value was 3.34 times higher than that obtained using the MRS media in biomass production. This MFL media is expected to have economic advantages for the cultivation of Leuc. citreum GR1 as a starter for kimchi production.

Real-Time RT-PCR for Validation of Reovirus Type 3 Safety During the Manufacture of Mammalian Cell Culture-Derived Biopharmaceuticals (세포배양 유래 생물의약품 생산 공정에서 Reovirus Type 3 안전성 검증을 위한 Real-Time RT-PCR)

  • Lee, Dong-Hyuck;Jeong, Hyo-Sun;Kim, Tae-Eun;Oh, Seon-Hwan;Lee, Jung-Suk;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.228-236
    • /
    • 2008
  • Validation of viral safety is essential in ensuring the safety of mammalian cell culture-derived biopharmaceuticals, because numerous adventitious viruses have been contaminated during the manufacture of the products. Mammalian cells are highly susceptible to Reovirus type 3 (Reo-3), and there are several reports of Reo-3 contamination during the manufacture of biopharmaceuticals. In order to establish the validation system for the Reo-3 safety, a real-time RT-PCR method was developed for quantitative detection of Reo-3 in cell lines, raw materials, manufacturing processes, and final products as well as Reo-3 clearance validation. Specific primers for amplification of Reo-3 RNA was selected, and Reo-3 RNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be $3.2{\times}10^0\;TCID_{50}/ml$. The real-time RT-PCR method was proven to be reproducible and very specific to Reo-3. The established real-time RT-PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with Reo-3. Reo-3 RNA could be quantified in CHO cell as well as culture supernatant. When the real-time RT-PCR assay was applied to the validation of virus removal during a virus filtration process, the result was similar to that of virus infectivity assay. Therefore, it was concluded that this rapid, specific, sensitive, and robust assay could replace infectivity assay for detection and clearance validation of Reo-3.

A study on manufacturing of red ginseng Makgeolli using the red ginseng starch and changes of physicochemical components of red ginseng Makgeolli during storage periods (홍삼 전분을 이용한 홍삼막걸리의 제조 및 이화학적 성분 변화)

  • Lee, Hwan;Kim, Yeong-Su;Kim, Do-Yeon;Kim, So-Young;Lee, Wan-Kyu;Lee, Sang-Myeong;Park, Jong-Dae;Shon, Mi-Yae
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.369-376
    • /
    • 2015
  • This study was performed to develop the maufacturing processes of Makgeolli using red ginseng starch (RGS). After the fermentation of RGS with koji, nuruk, and yeast, the different temperature effects on the number of the yeast cells, the content of organic acid, free sugars, and total acid, and pH were investigated. There were no changes in the composition of the yeast cell number and content of organic acid amd during 20 days at $4^{\circ}C$. The content of free sugars (sucrose, glucose and mannose) and the pH value of red ginseng Makgeolli decreased during storage at $4^{\circ}C$. This meant that the total acid content and pH value increased after organic acid was produced from fermentation. Therefore, red ginseng Makgeolli is highly acidic and sour. Since high acidity helps improve storage conditions, so this developed red ginseng Makgeolli is considered safe for consumption. Furthermore, the total content of ginsenoside was 2.47 mg/mL, which was differentiate Makgeolli using red ginseng starch, with others. Therefore, new red ginseng Makgeolli is rich in organic acid, free sugars, and ginsenoside. As a result, its storage, taste, and flavor improved.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.