• Title/Summary/Keyword: manufacturing cells

Search Result 455, Processing Time 0.03 seconds

The present status and future aspects of the market for printed electronics (인쇄전자 산업시장의 현황과 전망)

  • Park, Jung-Yong;Park, Jae-Sue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.263-272
    • /
    • 2013
  • Printed electronics creates electrically functional devices by printing on variety of substrates. Printing typically uses common printing equipment or other low-cost equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography and inkjet. Compared to conventional manufacturing of microelectronics, printed electronics is characterized by simpler and more cost-effective fabrication of high and low volume products. Now there is huge effort towards printing many other more functional components, from displays to transistors to photovoltaic cells, using the full range of printing technologies - from inkjet to roll to roll analogue print techniques. The market for printed electronics will rise from $1.99 billion in 2010 to $55.10 billion in 2020. In 2030, this industry could be $300 billion - larger than the silicon semiconductor industry - from lighting to displays[8].

Three-Dimensional Printed 3D Structure for Tissue Engineering (3 차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체)

  • Park, Jeong Hun;Jang, Jinah;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.817-829
    • /
    • 2014
  • One of the main issues in tissue engineering has been the development of a three-dimensional (3D) structure, which is a temporary template that provides the structural support and microenvironment necessary for cell growth and differentiation into the target tissue. In tissue engineering, various biomaterials and their processing techniques have been applied for the fabrication of 3D structures. In particular, 3D printing technology enables the fabrication of a complex inner/outer architecture using a computer-aided design and manufacturing (CAD/CAM) system, and it has been widely applied to the fabrication of 3D structures for tissue engineering. Novel cell/organ printing techniques based on 3D printing have also been developed for the fabrication of a biomimetic structure with various cells and biomaterials. This paper presents a comprehensive review of the functional scaffold and cell-printed structures based on 3D printing technology and the application of this technology to various kinds of tissues regeneration.

Preparation of Living Skin Equivalent by using the Contracted Collagen Lattice and Cultured Human Keratinocytes (수축된 콜라겐 격자와 배양된 각질형성세포를 이용한 피부 대용물질의 제조에 관한 연구)

  • Park, Jae-Gyeong;Jo, Geum-Cheol;Park, Ho-Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • An experimental study was performed for the preparation of living skin-equivalent by the using collagen gel contraction with human fibroblasts as neodermls and cultured human keratinocytes as neoderm is . The results were as follows ; 1) The rate of collagen gel contraction was dependent on the number of fibroblasts into the lattice and collagen contraction was progressed according to the increment of the number of the cells. 2) The rate of collagen gel contraction was progressed according to the decrement of the contraction of the collagen. 3) The rate of gel contraction was progressed according to the increment of serum concentration in the fixed concentration of the fibroblasts and collagen. 4) The lattice contraction was decreased according to the increment of the population doublings of the fibroblasts. 5) Macroscopically, the artificial dermis was gray white in color and tissue-like consistency and elas- ticity. 6) Microscopically, three dimensionally contracted artificial dermis showed more dense fibroblasts and its newly formed collagen fibrils in the matrix than one dimensionally contracted one. 7) Finally prepared skin-equivalent showed good attachment of living stratified keratinocytes to the dermal equivalent microscopically. It has been proposed that newly formed skin-equivalent is suitable for the graft of extensively and deeply burned patients. Shortening of the manufacturing period of skin-equivalent and development of conservation technique as a readily usable state are to be solved for our ongoing works.

  • PDF

Design, Optimization and Verification of 16S rRNA Oligonucleotide Probes of Fluorescence in-situ Hybridization for Targeting Clostridium spp. and Clostridium kluyveri

  • Hu, Lintao;Huang, Jun;Li, Hui;Jin, Yao;Wu, Chongde;Zhou, Rongqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1823-1833
    • /
    • 2018
  • Fluorescence in-situ hybridization (FISH) is a common and popular method used to investigate microbial communities in natural and engineered environments. In this study, two specific 16S rRNA-targeted oligonucleotide probes, CLZ and KCLZ, were designed and verified to quantify the genus Clostridium and the species Clostridium kluyveri. The optimal concentration of hybridization buffer solution for both probes was 30% (w/v). The specificity of the designed probes was high due to the use of pellets from pure reference strains. Feasibility was tested using samples of Chinese liquor from the famed Luzhou manufacturing cellar. The effectiveness of detecting target cells appears to vary widely in different environments. In pit mud, the detection effectiveness of the target cell by probes CLZ and KCLZ was 49.11% and 32.14%, respectively. Quantitative analysis by FISH technique of microbes in pit mud and fermented grains showed consistency with the results detected by qPCR and PCR-DGGE techniques, which showed that the probes CLZ and KCLZ were suitable to analyze the biomass of Clostridium spp. and C. kluyveri during liquor fermentation. Therefore, this study provides a method for quantitative analysis of Clostridium spp. and C. kluyveri and monitoring their community dynamics in microecosystems.

Design of Film-Type Frequency Selective Surface Structure Based on Printed Electronic Technology to Implement Frequency-Selective Space in Buildings (건물 내 주파수 선택적 공간 구현을 위한 인쇄전자 기술 기반 필름형 주파수 선택 표면구조 설계)

  • Lee, In-Gon;Yoon, Sun-Hong;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.1007-1010
    • /
    • 2017
  • In this paper, a frequency selective surface(FSS) with bandstop operation for radio-frequency spectrum management is presented. The proposed FSS is composed of patterns of fractal-based miniaturized unit cells for stable performance for angles of incidence and polarizations. For practical applications requiring high productivity and environmental compatibility, we fabricated a film-type FSS by screen-printing using Ag ink, rather than a conventional manufacturing method using a printed circuit board. To validate this study, we measured the transmission characteristics of the proposed FSS using the free-space measurement method, and observed the received strength of signal penetrating the FSS film applied to a wall.

Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heterooolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis (PSf-co-PPSS/HPA를 이용한 수소제조 수전해용 고체 고분자 전해질 복합 막의 제조)

  • Jung, Yun-Kyo;Lee, Hyuck-Jae;Jang, In-Young;Hwang, Gab-Jin;Bae, Ki-Kwang;Sim, Kyu-Sung;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Proton conducting solid polymer electrolyte (SPE) membranes have been used in many energy technological applications such as water electolysis, fuel cells, redox-flow battery, and other electrochemical devices. The availability of stable membranes with good electrochemical characteristics as proton conductivity at high temperatures above 80 $^{\circ}C$ and low cost are very important for its applications. However, the presently available perfluorinated ionomers are not applicable because of high manufacturing cost and high temperature use to the decrease in the proton conductivity and mechanical strength. In order to make up for the weak points, the block copolymer (BPSf) of polysulfone and poly (phenylene sulfide sulfone) were synthesized and sulfonated. The electrolyte membranes were prepared with phosphotungstic acid (HPA)/sulfonated BPSf via solution blending. This study would be desirable to investigate the interaction between the HPA and sulfonated polysulfone. The results showed that the characteristics of SPSf/HPA blend membrane was a better than Nafion at high temperature, 100 $^{\circ}C$. These membranes proved to have a high proton conductivity, $6.29{\times}10-2$ S/cm, a water content, 23.9%, and a ion exchange capacity, 1.97 meq./g dry membrane. Moreover, some of the membranes kept their high thermal and mechanical stability.

Effect of Bambusae Caulis in Liquamen and Silk Worm Powder on Blood Sugar in db/db Mice (죽력과 누에가루 배합약물이 db/db mouse의 혈당강하에 미치는 영향)

  • Jang Kyeong Seon;Cheong Ki Sang;Choi Chan Hun;Oh Young Jun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.759-764
    • /
    • 2003
  • This study was carried out to understand the effects Of Bambusae Caulis in Liquamen and Silk Worm powder on blood sugar in the db/db mice. Refined Bambusae Caulis in LiquamenD(BCL,D)manufactured by high temperature production process and Silk Worm Powder were used. The Bambusae Caulis in Liquamen extracted from bamboo charcoal manufacturing process was filtered and refined. The effects of BCL.D + Silk Worm Powder and BCL.D were observed in terms of blood sugar, creatinine, BUN, GPT and histological examination of pancreatic tissue in db/db mice. The results were as follows : The amount of glucose was slightly decreased (P < 0.05) in the B CL.D+SWP groups compared with the control. The amount of glucose was significantly decreased (P < 0.01) in the BCL.D groups compared with the control. The amount of Creatinine did not show any differences among three groups. The amount of blood urea nitrogen observed significant decrease in the case of BCL.D groups. The amount of GPT did not show any differences among three groups. The intense of insulin-immunoreactivity of β cells showed the strongest in the normal group, and more strong in the BCL.D+SWP group compared with control group.

Study and Application of the New Stick Make Up Product Using Clay Minerals as Binder & Buffer.

  • Kim, Sang-Je;Shin, Dong-Uk;Cho, Pan-Gu;Jung, Chul-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.4 s.34
    • /
    • pp.97-110
    • /
    • 1999
  • The new stick make-up product was studied by using a gel, which is a viscous complex formed with clay minerals, vitamins A and E and fluorinated liquid polymer with a 1500 molecular weight. The gel cannot be obtained with any random combination of clay minerals and the ingredients described above. It takes the sequential manufacturing method as follows to get this kind of gel. Firstly, clay minerals and liquid polymers have to be pre-mixed in order to saturate the liquid polymers with the clay minerals. Then the on-processed gel has to be finely crystallized. The clay minerals, which are the core elements for this gel, were used as a function of Binder & Buffer and liquid polymer was mixed together for the deterioration of the surface tension of each component and to form a functional film in the gel. This liquid polymer was combined with clay minerals because it is not miscible with most oils and solvents. Waxes have a function of keeping a solid status in the stick. We reduced the usage of waxes by putting clay minerals as buffer in the proportion of 0.5:1 with oil phase. Ceramide takes care of the skin when used regularly and maintains the skin's moisture. Vitamins A and E contribute to preventing skin aging by the activation of skin cells. We could get the stable viscous gel, which has about 80% oil phase using clay minerals and liquid polymer. The crystalline structures of gel were surface-chemically-analyzed using SEM and Image Analyzer and were thermodynamically analyzed using DSC. Surface tension test and softness were done by Rheometer. In the end, these characteristics were verified by consumer panel tests in Seoul, Daegeon and Pusan in Korea and Hokkaido, Osaka and Miyazaki in Japan with correlation to the climate.

  • PDF

Mechanism of Phenoxy Compounds as an Endocrine Disrupter (Phenoxy계 화합물의 내분비장애작용 검색 및 기전연구)

  • 김현정;김원대;권택헌;김동현;박영인;동미숙
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.331-339
    • /
    • 2002
  • Phenoxy compounds, 2,4-Dichlorophenol acetoxy acid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a hormonal herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them wing in vivo and in vitro androgenicity assay system. Administration of 2,4-D (50 mg/kg/day, p.o.) or DCP (100 mg/kg/day, p.o.) to rats caused an increase in the tissue weight of ventral prostate, Cowpers gland and glands penis. These increase of androgen-dependent tissues were additively potentiated when rats were simultaneously treated with low dose of testosterone (1 g/kg, s.c.). 2,4-D increased about 350% of the luciferase activity in the PC cells transiently cotransfected phAR and pMMTV-Luc at concentration of $10^{-9}$ M. In 2,4-D or DCP-treated castrated rats, testosterone 6$\beta$-hydroxylase activity was not significantly modulated even when rats were co-treated with testosterone. In vitro incubation of 2,4-D and DCP with microsomes at 50 $\mu$M inhibited testosterone 6$\beta$-hydroxylase activity about 27% and 66% in rat liver microsomes, about 44% and 54% in human liver microsomes and about 50% and 45% in recombinant CYP3A4 system, respectively. The amounts of total testosterone metabolites were reduced about 33% and 75% in rat liver microsomes, 69% and 73% in human liver microsomes and 54% and 64% in recombinant CYP3A4 by 2,4-D or DCP, respectively. Therefore, the additive androgenic effect of 2,4-D or DCP by the co-administration of the low dose of testosterone may be due to the increased plasma level of testosterone by inhibiting the cytochrome P450-mediated metabolism of testosterone. These results collectively suggested that 2,4-D and DCP may act as androgenic endocrine disrupter by binding to the androgen receptor as well as by inhibiting the metabolism of testosterone.

Proteolytic Systems of Lactic Acid Bacteria in Milk Fermentation (유제품 발효에서 유산균의 단백질 가수분해 시스템)

  • Chang, Oun-Ki;Seol, Kuk-Hwan;Kim, Min-Kyung;Han, Gi-Sung;Jeong, Seok-Geun;Oh, Mi-Hwa;Park, Beom-Young;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.119-129
    • /
    • 2012
  • Lactic acid bacteria (LAB) have been used as starter cultures in the manufacturing processes of fermented dairy products such as cheese and yogurt. LAB have a proteolytic system to use the nitrogen source from milk for their growth. The proteolytic system involved in casein utilization provides cells with essential amino acids during growth in milk and is also of industrial importance, because of its contribution to the development of the organoleptic properties such as flavor of fermented milk products. In the most extensively studied LAB, Lactococcus lactis, the main features of the proteolytic system comprise 3 groups. The first is proteinase, which initially cleaves the milk protein to peptides. The second group consists of transport systems for the internalization of oligopeptides, which are involved in the cellular uptake of small peptides and amino acids. The third group, peptidases in the cell, cleaves peptides into smaller peptides and amino acids. This review is to provide the information about the proteolytic system of LAB.

  • PDF