• Title/Summary/Keyword: manufacturing cells

Search Result 455, Processing Time 0.03 seconds

A Characteristics of the Applied SOG Lens for the CPV Module (SOG렌즈를 적용한 집광형 태양전지모듈 특성)

  • Jeong, Byeong-Ho;Lee, Kang-Yoen;Park, Ju-Hoon;Moon, Eun-Ah;Lee, Sang-Hyun;Kim, Dae-Gon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • CPV system in the desert areas or areas near the equator, as is suitable for high-temperature region. As compared to silicon solar cells, CPV system have a high proportion of a BOS (balance of system). Solar cells because of its low proportion when designing a module technology is applied in a variety of ways. Applied to the CPV system is classified into two kinds of optical technology. One of those using fresnel lens uses refraction of light energy. The other is a mirror reflection of the structure using sprays. Both of these two ways to condense the sun to collect solar cell is a form of light. And goals by using a small solar cell materials is to produce more energy. In this paper, suitable for a domestic environment, with the aim CPV Manufacturing Technology, built on a variety of modular process technology to the development of a prototype performance analysis was carried out. In particular, silicone coated on the glass by the method of implementation of the Fresnel lens SOG(Silicon on glass) by applying the lens to absorb the solar spectrum was broad. In addition to, for the analyze to characteristics of the CPV module, developed CPV module performance and generating characteristics studied. These related technology through research and development of high-performance multi-junction solar cells, modules, development of concentrating solar power systems to facilitate the growth of the market is considered to be.

Effects of Surface Homogeneity on Optical Properties of Sputter-deposited AlTiO Selective Transmitting Layers (스퍼터 증착으로 형성된 AlTiO 선택적 투과막의 표면 균질성에 따른 광학적 특성)

  • Jeong, So-Un;Lim, Jung-Wook;Lee, Seung-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Transparent dye-sensitized solar cells have been widely investigated for the application to building integrated photovoltaic system. Thin film Si-based solar cells are emerging as a substitute for the dye-sensitized solar cells because their merits of well-established manufacturing processes. Since the selective transmitting layer transmits visible light and reflects infrared light, the solar cell efficiency increases with the introduction of the selective transmitting layer. In this work, AlTiO thin films were grown as the selective transmitting layer by cost-effective sputter deposition and their transmittances were improved by controlling deposition parameters.

The Effect of $PtCl_4$ Concentration on Dye-Sensitized Solar Cell Efficiency ($PtCl_4$ 농도에 따른 염료감응형 태양전지의 효율 변화)

  • Seo, Hyun-Seung;Park, Mi-Ju;Choi, Eun-Chang;Lee, Sung-Uk;Kim, Hyung-Jin;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.435-436
    • /
    • 2008
  • Dye-sensitized Solar Cells(DSSCs) which convert incident sun light into electricity were expected to overcome global warming and depletion of fossil fuels. And it is one of study that is lately getting into the spotlight because manufacturing method is more simple and inexpensive than existing silicon solar cells. In this respect, DSSCs are in the limelight as the next generation solar cells. DSSCs are generally composed of a dye-modified $TiO_2$ photoelectrode, a Pt counter electrode, and an electrolytes containing a redox couple$(I^-/I_3^-)$. Among these elements, pt electrode were prepared by applying electric potential to FTO substrate in the $H_2PtCl_6$ solution. In this study, we report the solar cell efficiency depending on $PtCl_4$ concentration change. $PtCl_4$ concentration was 1mM, 5mM, 10mM, and 20mM, and adhered on FTO glass substrate by sintering process. When applied each $PtCl_4$ counter electrode on DSSC, the best efficiency was found at 10mM of $PtCl_4$ concentration. The catalyst promotes the movement of electron from the counter electrode to the electrolyte the higher the molarity, the better the efficiency. However, in case of 20mM, it is estimated that over-deposited $PtCl_4$ tends to restrict the movement of electron due to its bundle formation.

  • PDF

Antimutagenic and Anticancer Effects of Salted Mackerel with Various Kinds of Salts (소금의 종류에 따른 염장 고등어의 항돌연변이효과 및 암세포 성장억제효과)

  • KONG Chang-Suk;BAK Soon-Sun;JUNG Keun-Ok;KIL Jeung-Ha;LIM Sun-Young;PARK Kun-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.5
    • /
    • pp.281-285
    • /
    • 2005
  • Raw meat of mackerel (Scomber japonicus) was salted by refined, sun-dried, bamboo, and KC1-added bamboo salts. Antimutagenic activity on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Ames test and growth inhibitory effects of AGS human gastric and HT-29 human colon adenocarcinoma cells were investigated using methanol extracts of the salted mackerels. Mackerel salted sun-dried, bamboo, and KC1-added bamboo salts used increased the antimutagenic activities against MNNG, however, the sample treated with refined salt reduced the antimutagenic activity. Inhibitory effects of the salted-mackerels on the growth of human cancer cells were increased as dose dependent pattern. Mackerel salted with refined salt activated the growth of AGS human gastric adenocarcinoma cells, but mackerel salted with sun-dried, bamboo, and KC1-added bamboo salts kept or increased anticancer effect compared to the raw mackerel. Mackerel salted with KC1-added bamboo salt led to the highest antimutagenic and anticancer activities. These results suggest that antimutagenic and anticancer effects of mackerel during manufacturing of the salted-mackerel could be enhanced by using different kind of salts such as bamboo, or KC1-added bamboo salts.

Effect of the Hesperetin and Naringenin on $pp60^{v-src}$-induced $NF-{\kappa}B$ Activation ($pp60^{v-src}$에 의한 $NF-{\kappa}B$ 활성화에 대한 헤스페레틴과 나린제닌의 저해 효과)

  • Kwon, O-Song;Kim, Bo-Yeon;Kim, Kyoung-A;Kim, Min-Soo;Oh, Hyun-Cheol;Kim, Beom-Seok;Kim, Young-Ho;Ahn, Jong-Seog
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.244-249
    • /
    • 2004
  • The effects of hesperetin and naringenin on $NF-{\kappa}B$ activation were investigated in normal rat kidney cells transformed by temperature sensitive Rous Sarcoma Virus (tsNRK). The flavonoids, naringenin and hesperetin, significantly reduced v-Src-induced $NF-{\kappa}B$ activation as well as phosphorylation of Akt and GSK-3 in tsNRK cells, whereas these compounds did not effect on platelet-derived growth factor (PDGF)-induced $NF-{\kappa}B$ activation in $NIH3T3{\gamma}l$ cells. In addition, the DNA binding activity of SP-I was also reduced but that of AP-1 was not affected by the compounds. Our study suggests that Src-induced $NF-{\kappa}B$ activation could occur via Akt-GSK-3 pathway without $IkB{\alpha}$ degradation and that naringenin and hesperetin could be used in the treatment of cancer through the inhibition of $NF-{\kappa}B$ activation.

Enhancement of Power Conversion Efficiency from Controlled Nanostructure in Polymer Bulk-Hetero Junction Solar Cells

  • Wang, Dong-Hwan;Park, O-Ok;Park, Jong-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.76-76
    • /
    • 2011
  • Polymer-fullerene based bulk heterojunction (BHJ) solar cells can be fabricated in large area using low-cost roll-to-roll manufacturing methods. However, because of the low mobility of the BHJ materials, there is competition between the sweep-out of the photogenerated carriers by the built-in potential and recombination within the thin BHJ film [12-15]. Useful film thicknesses are limited by recombination. Thus, there is a need to increase the absorption by the BHJ film without increasing film thickness. Metal nanoparticles exhibit localized surface plasmon resonances (LSPR) which couple strongly to the incident light. In addition, relatively large metallic nanoparticles can reflect and scatter the light and thereby increase the optical path length within the BHJ film. Thus, the addition of metal nanoparticles into BHJ films offers the possibility of enhanced absorption and correspondingly enhanced photo-generation of mobile carriers. In this work, we have demonstrated several positive effects of shape controlled Au and Ag nanoparticles in organic P3HT/PC70BM, PCDTBT/PC70BM, Si-PCPDTBT/PC70BM BHJ-based PV devices. The use of an optimized concentration of Au and Ag nanomaterials in the BHJ film increases Jsc, FF, and the IPCE. These improvements result from a combination of enhanced light absorption caused by the light scattering of the nanomaterials in an active layer. Some of the metals induce the plasmon light concentration at specific wavelength. Moreover, improved charge transport results in low series resistance.

  • PDF

Development of Good Manufacturing facility for Radiopharmaceuticals (우수방사성의약품 생산시설 개발)

  • Shin, Byung-Chul;Choung, Won-Myung;Park, San-Hyun;Lee, Kyu-Il;Park, Kyung-Bae;Park, Jin-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.145-149
    • /
    • 2003
  • Manufacturing facilities of the pharmaceuticals must meet certain level of the cleanness required so that foreign substances such as dust, moisture, heat, microorganism, or virus do not contaminate the product. In case of radiopharmaceuticals for medical treatment and diagnosis, not only should the operators and environment be protected from radiation but also need to be isolated from the foreign contaminant. Therefore, manufacturing facilities for radiopharmaceuticals must satisfy the design standards of both hot cell and clean room which are specified by GMP. However, standards of maintaining negative pressure for preventing spread of radioactive contaminant in isolated facilities conflict with the standards of maintaining positive pressure for keeping cleanness. To solve this problem, air pressure of hot cell was designed lower than in the adjacent area to meet standards of the radiation safety. To keep higher cleanness in certain part of the hot cell for filling, minimal relative positive pressure allows. In order to effectively maintain the cleanness that is required for production of Tc-99m generator, which takes 70% of whole demand of radiopharmaceuticals, the rooms placed in each side of production room are used as a buffer area and three lead hot cells are installed in production room. In this research, we established the appropriate engineered design concept for Tc-99m generator manufacturing facility, which satisfies both GMP cleanness standard for preventing particles, bacteria, other contaminants and the regulations of radiation safety for supervising and controlling the amount of radiation exposure and exhausted radioactivity. And the concept of multi-barrier buffer zones is introduced to apply negative air pressure for hot cell with first priority and to continue relative positive air pressure for clean room.

Mechanical Properties of Metallic Additive Manufactured Lattice Structures according to Relative Density (상대 밀도에 따른 금속 적층 제조 격자 구조체의 기계적 특성)

  • Park, Kwang-Min;Kim, Jung-Gil;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The lattice structure is attracting attention from industry because of its excellent strength and stiffness, ultra-lightweight, and energy absorption capability. Despite these advantages, widespread commercialization is limited by the difficult manufacturing processes for complex shapes. Additive manufacturing is attracting attention as an optimal technology for manufacturing lattice structures as a technology capable of fabricating complex geometric shapes. In this study, a unit cell was formed using a three-dimensional coordinate method. The relative density relational equation according to the boundary box size and strut radius of the unit cell was derived. Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) with a controlled relative density were designed using modeling software. The accuracy of the equations for calculating the relative density proposed in this study secured 98.3%, 98.6%, and 96.2% reliability in SC, BCC, and FCC, respectively. A simulation of the lattice structure revealed an increase in compressive yield load with increasing relative density under the same cell arrangement condition. The compressive yield load decreased in the order of SC, BCC, and FCC under the same arrangement conditions. Finally, structural optimization for the compressive load of a 20 mm × 20 mm × 20 mm structure was possible by configuring the SC unit cells in a 3 × 3 × 3 array.

New nonvolatile unit memory cell and proposal peripheral circuit using the polymer material (폴리머 재료를 이용한 새로운 비휘발성 단위 메모리 셀과 주변회로 제안)

  • Kim, Jung-Ha;Lee, Sang-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.825-828
    • /
    • 2005
  • In this paper, we propose a new nonvolatile unit memory cell and proposal peripheral circuit using the polymer material. Memory that relies on bistable behavior- having tow states associated with different resistances at the same applied voltage - has attracted much interest because of its nonvolatile properties. Such memory may also have other merits, including simplicity of structure and manufacturing, and the small size of memory cells. We have plotted the load line graphs for the use of a polymer memory character, hence we have designed in the band-gap reference shape of a write/erase drive, and then designed in the 2-stage differential amplifier shape of a sense amplifier in the consideration of a low current characteristic of a polymer memory cell. The simulation result shows that is has high gain about 80dB by sensing the very small current.

  • PDF

Fabrication and characteristics of the flexible DSSC

  • Choe, Eun-Chang;Choe, Won-Chang;Wi, Jin-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.2-400.2
    • /
    • 2016
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next generation solar cell because of their simple structure and low manufacturing cost. To realize a commercially competitive technology of DSSCs, it is imperative to employ a technique to prepare nanocrystlline thin film on the flexible organic substrate, aiming at increasing the flexibility and reducing the weight as well as the overall device thickness of DSSCs. The key operation of glass-to-plastic substrates conversion is to prepare mesoporous TiO2 thin film at low temperature with a high surface area for dye adsorption and a high degree of crystallinity for fast transport of electrons. However, the electron transport in the TiO2 film synthesized at low temperature is very poor. So, in this study, TiO2 films synthesized at high temperature were transferred on the selective substrate. We fabricated DSSCs at low temperature using this method. So, we confirmed that the performance of DSSCs using TiO2 films synthesized at high temperature was improved.

  • PDF