• Title/Summary/Keyword: manual handling

Search Result 182, Processing Time 0.031 seconds

Determination of Optimal Permissible Weights in Manual Material Handling for High Lifting Frequency (고인양빈도에 대한 수운반작업의 최적 허용중량 결정)

  • 홍성일;이종권;남현우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.1-11
    • /
    • 1995
  • Manual lifting, as a part of manual materials handling activities, is recognized by authorities in the fields of occupational health and safety as a major hazards to industrial workers. In order to minimize the injuries caused by manual material handling activities as well as maximize job productivity, it is important to determine the maximum weights. This paper presents the optimal combination of membership functions according to the high lifting frequency and determines the safe maximum acceptable weights in manual lifting activities through the actual experiment.

  • PDF

Development and Application of a Loading/Unloading Device for Effective Material Handling (효율적 인력물자 운반용 적.하화대의 개발 및 활용)

  • 황춘수;장통일;임현교
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.125-131
    • /
    • 2003
  • In recent years, the Korean Army made use of fork-lifters or conveyors when loading and/or unloading military material in order to prevent accidents and to promote efficiency of military material handling activities. However, in troops smaller thin battalions, manual material handling activities are still committed for many reasons. In this thesis, a brand new loading/unloading device for efficient military material handling or manual workers was developed, and its validation study was conducted through objective assessment based on electromyography, subjective assessment based on Body-Map technique developed by Corlett and Bishop, and finally work performance comparison. The results of EMG analysis showed that muscular workload improved by 24% when using the device compared to manual work without the device, and complain of each body part was remarkably reduced. In addition, remarkable effectiveness enhancement was observed in the work performance. Consequently, it could be concluded that ergonomic devices like one developed in this research should be studied further in the ergonomic sense as well as in the economical sense.

Manual Handling in Aged Care: Impact of Environment-related Interventions on Mobility

  • Coman, Robyn L.;Caponecchia, Carlo;McIntosh, Andrew S.
    • Safety and Health at Work
    • /
    • v.9 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • The manual handling of people (MHP) is known to be associated with high incidence of musculoskeletal disorders for aged care staff. Environment-related MHP interventions, such as appropriate seated heights to aid sit-to-stand transfers, can reduce staff injury while improving the patient's mobility. Promoting patient mobility within the manual handling interaction is an endorsed MHP risk control intervention strategy. This article provides a narrative review of the types of MHP environmental controls that can improve mobility, as well as the extent to which these environmental controls are considered in MHP risk management and assessment tools. Although a range of possible environmental interventions exist, current tools only consider these in a limited manner. Development of an assessment tool that more comprehensively covers environmental strategies in MHP risk management could help reduce staff injury and improve resident mobility through auditing existing practices and guiding the design of new and refurbished aged care facilities.

Literature Review on One.Handed Manual Material Handling (한손 수동물자취급에 관한 문헌 조사)

  • Mo, Seung-Min;Kwag, Jong-Seon;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.819-829
    • /
    • 2010
  • By referring thirty-seven previous studies on manual material handling (MMH), this paper analyzed guidelines and main factors of one-handed tasks. The previous studies concerned main factors of distance, weight, frequency, posture, gender, age, training, direction of force, height of the force exerted, and object shape and size. Based on these factors, the criteria used to understand one-handed tasks were objective measures of maximum strength, reaction force, etc., psychophysical measures of maximum acceptable frequency and weight, etc., and physiological measures of oxygen uptake, heart rate, electromyography, etc. An allowance threshold model regarding quantitative and objective fatigue and workload would be suggested for future research. This study would be expected that it serve to establish and Korean recommendations of one-handed tasks.

Anslysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung Hwan;Freivalds, Andris;Lee, Myun W.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.69-81
    • /
    • 1995
  • Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for the analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$^{TM}$, Virtual technologies) with eighteem joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented inte- grating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an efficient and cost-effective solution to task analysis of manual tool handling tasks.s.

  • PDF

Guidelines on the Operation Phases of Manual Material Handling Tasks Through Literature Reviews

  • Lee, Kyung-Sun;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.325-341
    • /
    • 2017
  • Objective: The purpose of this study is to suggest the guidelines of operation phases to minimize injuries and musculoskeletal disorders in manual material handling (MMH) tasks through literature reviews. The guidelines are presented as the preparing phase, lifting phase, carrying phase, and lowering phase. Also, we summarized the non-numerical general guidelines for MMH tasks. Background: Manual material handling is still a main cause to musculoskeletal disorders. Method: Procedures of a literature review are classified into database selection, keyword search, title review, abstract review related to literature selection, guideline review and arrangement. A total 48 papers and books were analyzed in detail by title and abstract reviews. Results: In the preparing phase, we suggested the basic conditions in MMH, preparing procedure, clothing and protective equipment, and education. In the lifting and carrying phases, we recommended maximal acceptable weight by frequency and body posture. In the lowering phase, we suggested the lowest weight and safety body postures. Finally, we recommended general guidelines and guideline items for MMH. General guidelines are presented to suggest worker selection, technical education, and work design parts. Conclusion: We suggested the guidelines on the four operation phases of MMH tasks such as preparing, lifting, carrying, and lowering phases. Application: The findings of this study can be utilized as guidelines for proactive recommendations according to workers in MMH tasks.

Analysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung-Hwan;Freivalds, Andris;Lee, Myun-W.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.596-605
    • /
    • 1994
  • An efficient measurement and evaluation system for hand tool tasks will provide a practical solution to the problem of designing and evaluating manual tool tasks in the workplace. Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$\^$TM/, Virtual technologies) with eighteen joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented integrating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an, efficient and cost-effective solution to task analysis of manual tool handling tasks. These tasks are becoming increasingly important areas of occupational health and safety of the country.

Design and Development of an Ergonomic Trolley-Lifter for Sheet Metal Handling Task: A Preliminary Study

  • Radin Umar, Radin Zaid;Ahmad, Nadiah;Halim, Isa;Lee, Poh Yan;Hamid, Malek
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.327-335
    • /
    • 2019
  • Background: There have been some concerns related to manual handling of large items in industry. Manual handling operations of large sheet metal may expose workers to risks related to efficiency as well as occupational safety and health. Large sheet metals are difficult to move and burdensome to lift/transfer, and handling the sharp sheet edges may result in contact stress and/or cut injuries on the workers. Methods: Through observation, interview, and immersive simulation activities, a few problems related to current handling of sheet metals were identified. A sheet metal trolley-lifter was then designed and fabricated to address these issues. A pilot study on the use of the developed trolley-lifter for handling sheet metals was conducted to compare between the new and traditional handling methods. Results: The pilot study of the trolley-lifter showed promising results in terms of improving the cycle time, manpower utilization, and working postures compared with the traditional handling method. Conclusion: The trolley-lifter offers an alternative solution to automation and a mechanized assistive device by providing a simple mechanism to assist the handling of sheet metals effectively and safely.

An Ergonomic Study on the Work Loads of Manual Workers (현장근로자의 생체부하에 관한 인간공학적 연구)

  • 이상도;우동필
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.174-180
    • /
    • 1999
  • The objective of this study was to investigate the effects of carrying postures and weight of load carried one time on a worker when carrying heavy loads. Six male students participated in this study to perform a manual materials carrying task as subjects. To make comparison of work loads with physical work capacity, maximal oxygen uptake measurement tests were performed with submaximal test. The average oxygen consumption for the tasks of this study was 27.59~31.93% $VO_2$max. The results showed that the weight of load carried one time affects on working heart rate and oxygen consumption($VO_2$). It was found that the workload was significantly lower when handling a 20kg load at a frequency rate of 3times/min than when handling a 40kg load at a frequency rate of 1.5 times/min. There was no difference between carrying postures. It is concluded from the results of this study that the workload can be reduced by controlling conditions of a manual materials handling task.

  • PDF

The Study of the Influence of Intra-Abdominal Pressure to Manual Materials Handling

  • Woo, Tsun-Yu
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.90-98
    • /
    • 2008
  • This research selects the lifting task to be the main subject. Four experiments were designed to measure which among lifting postures, lifting heights, waist-belt, and breathing control significantly influences intra-abdominal pressure (Gallagher, 1991; Lavender, Andersson and Natarajan, 1999). The experimental results were taken to be the recommendations of the manual materials handling work design. The research findings reveal that the symmetrical stoop posture is the most significant to the intra-abdominal pressure within all lifting postures. When the lifting height is increased, the intra-abdominal pressure produced relatively goes up. Also, the combination of symmetrical stoop posture, waist-belt use, and inspiration and holding at the same time is the most efficient in carrying out lifting tasks. Simultaneously, the research discovers that for any posture, the volume of the intra-abdominal pressure is much bigger when using the waist-belt compared to when it is not used. Therefore, the waist-belt design for the lifting works might be the future research approach.