• Title/Summary/Keyword: mannose enzyme II

Search Result 8, Processing Time 0.022 seconds

Cloning and Expression of the Gene Encoding Mannose Enzyme II of the Corynebacterium glutamicum Phosphoenolpyruvate-Dependent Phosphotransferase System in Escherichia coli

  • Lee, Jung-Kee;Sung, Moon-Hee;Yoon, Ki-Hong;Pan, Jae-Gu;Yu, Ju-Hyun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 1993
  • The gene for mannose enzyme II of phosphoenolpyruvate-dependent phosphotransferase system from Corynebacterium glutamicum KCTC 1445 was cloned into Escherichia coli ZSC113 using plasmid pBR 322. The recombinant plasmid, designated pCTS3, contained 2.2 kb DNA fragment, and the physical map of the cloned DNA fragment was determined. The E. coli ptsM ptsG mutant transformed with pCTS3 restored glucose and mannose fermentation ability, and grew well on these sugars as the sole carbon source in the minimal medium. The transform ant harboring pCTS3 showed a PTS-mediated repression of growth on maltose by mannose analogue, 2-deoxyglucose. The specificity of the response to 2DG therefore indicates that the cloned DNA fragment carries mannose enzyme II gene.

  • PDF

Cloning, Expression, and Nucleotide Sequencing of the Gene Encoding Glucose Permease of Phosphotransferase System from Brevibacterium ammoniagenes

  • Yoon, Ki-Hong;Yim, Hyouk;Jung, Kyung-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.214-221
    • /
    • 1998
  • A Brevibacterium ammoniagenes gene coding for glucose/mannose-specific enzyme II ($EII^{Glc}$) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned by complementing an Escherichia coli mutation affecting a ptsG gene, and the complete DNA nucleotide sequence was determined. The cloned gene was identified to be a ptsG, which enables the E. coli transportment to use glucose more efficiently than mannose as the sole carbon source in an M9 minimal medium. The ptsG gene of B. ammoniagenes consists of an open reading frame of 1,983 nucleotides putatively encoding a polypeptide of 661 amino acid residues and a TAA stop codon. The deduced amino acid sequence of the B. ammoniagenes $EII^{Glc}$ shows, at $46\%$, the highest degree of sequence similarity with the Corynebacterium glutamicum EII specific for both glucose and mannose. In addition, the $EII^{Glc}$ shares approximately $30\%$ sequence similarities with sucrose-specific and ${\beta}$-glucoside-specific EIIs of the several bacteria belonging to the glucose-PTS class. The 161-amino-acid C-terminal sequence of $EII^{Glc}$ is also similar to that of E. coli enzyme $IIA^{Glc}$, specific for glucose ($EIIA^{Glc}$). The B. ammoniagenes $EII^{Glc}$ consists of three domains; a hydrophobic region (EIIC) and two hydrophilic regions (EIIA, EIIB). The arrangement of structural domains, IIBCA, of the $EII^{Glc}$ is identical to those of EIIs specific for sucrose or ${\beta}$-glucoside. While the domain IIA was removed from the B. ammoniagenes $EII^{Glc}$ the remaining domains IIBC were found to restore the glucose and mannose-utilizing capacity of E. coli mutant lacking $EII^{Glc}$ activity with $EIIA^{Glc}$ of the E. coli mutant. $EII^{Glc}$ contains a histidine residue and a cysteine residue which are putative phosphorylation sites for the protein.

  • PDF

Changes on the Components of Free Polysaccharide from Cell Wall of Persimmon Fruit by Treatments of Cell Wall Degrading Enzymes (세포벽분해효소의 처리에 따른 감과실의 세포벽 유리 다당류의 변화)

  • 신승렬;김미현
    • Food Science and Preservation
    • /
    • v.2 no.1
    • /
    • pp.173-183
    • /
    • 1995
  • This paper was carried out to investigate changes in chromatograms of polysacctatides and soluble pectins on Sephadex G-50 and non-cellulosic neutral sugars of polysaccharides isolated from cell wall of persimmon fruits treated with polygalacturonase and $\beta$-galactosidase in vitro. The chromatogram pattern of soluble pectins extracted from cell wall treated with $\beta$-galactosidase on Sephacryl S-500 column were similar to those of untreatment, but contents of soluble pectins treated with $\beta$-galactosidase were different from those of untreatment. The patterns of chromatograms In soluble pectins extracted from cell wall treated with polygalacturonase were more complex and lower molecular polymer than those of other cell wall-degrading enzyme treatments. Non-cellulosic neutral sugar of polysaccharides in fraction I of soluble material treated with polygalacturonase was rhamnose, those in fraction II were similar to those in fraction III and contents of arabinose, xylose and glucose were higher than contents of other non-cellulosic neutral sugars. Non-cellulosic neutral sugars of polysaccharides in fraction I in soluble material by $\beta$-galactosidase treatment were rhamnose, arabinose, galactose and mannose. Content of glucose of polysaccharides in fraction II was higher than that in fraction I . Non-cellulosic neutral sugars treated with mixed enzyme were rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose. Compositions of non-cellulosic neutral sugars of polysaccharides in fraction I were similar to those in fraction II and III.

  • PDF

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

Changes in the Non-cellulosic Neutral Sugars of Cell Wall of Persimmon Fruit by Treatment of Cell Wall-Degrading Enzymes (세포벽 분해효소의 처리에 따른 감과실의 세포벽 구성 비섬유성 중성당의 변화)

  • 김광수;신승렬;송준희;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.247-253
    • /
    • 1995
  • This paper was performed to investigate the changes of non-cellulosic neutral sugars composition in cell wall of persimmon fruit by treatment of cell wall degrading enzyme in vitro. Rhamnose, xylose and galactose in cell wall by polygalacturonase treatment, arabinose, galactose and rhamnose in cell wall by mixed enzyme treatment and arabinose and galactose in cell wall by ${\beta}-galactosidase$ treatment decreased, respectively. Noncellulosic neutral sugars of pectins extracted cell wall by enzyme treatments decreased and those by polygalacturonase treatment decreased remarkably. Rhamnose, arabinose and xylose in hemicellulose I of cell wall by polygalacturonase treatment were higher than those of untreated, and rhamnose and xylose in that by ${\beta}-galactosidase$ treatment were higher but arabinose, mnnose and galactose decreased. Xylose, mannose and glucose in that by mixed enzyme treatment were higher than those of untreatment and arabinose and galactose decreased. Contents of total non-cellulosic neutral sugars in hemicellulose of untreatment, and contents xylose, and glucose in hemicellulose II of cell wall by polygalacturonase treatmet decreased but those of other treatments were not changed.

  • PDF

Clinical Problems in ML II and III: Extra-skeletal Manifestations

  • Park, Sung Won
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.5-7
    • /
    • 2016
  • Mucolipidoses II and III alpha/beta (ML II and ML III) are lysosomal disorders in which the essential mannose-6-phosphate recognition marker is not synthesized onto lysosomal hydrolases and other glycoproteins. The disorders are caused by mutations in GNPTAB, which encodes two of three subunits of the heterohexameric enzyme, N-acetylglucosamine-1-phosphotransferase ML II, recognizable at birth, often causes intrauterine growth impairment and sometimes the prenatal "Pacman" dysplasia. The main postnatal manifestations of ML II include gradual coarsening of neonatally evident craniofacial features, early cessation of statural growth and neuromotor development, dysostosis multiplex and major morbidity by hardening of soft connective tissue about the joints and in the cardiac valves. Fatal outcome occurs often before or in early childhood. ML III with clinical onset rarely detectable before three years of age, progresses slowly with gradual coarsening of the facial features, growth deficiency, dysostosis multiplex, restriction of movement in all joints before or from adolescence, painful gait impairment by prominent hip disease. Cognitive handicap remains minor or absent even in the adult, often wheelchair-bound patient with variable though significantly reduced life expectancy. As yet, there is no cure for individuals affected by these diseases. So, clinical manifestations and conservative treatment is important. This review aimed to highlight the extra-skeletal clinical problems in ML II and III.

Studies on the Lipolytic Enzyme of Molds Part II. Cultural condition of Rhizopus japonicus (사상균(絲狀菌)의 지방분해효소(脂肪分解酵素)에 관(關)한 연구(硏究) 제2보(第2報) 분리사상균(分離絲狀菌) Rhizopus japonicus의 배양조건검토(培養條件檢討))

  • Chung, Man-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-41
    • /
    • 1976
  • These experiment were conducted to investigate the cultural condition of the lipase production by Rhizopus japonicus. The results obtained were as follows: 1. Soybean meal and ammonium sulfate were the most effective in the lipase production as organic and inorganic nitrogen sources, respectively. 2. The lipase production was strongly inhibited, when added as carbon sources xylose, glucose, fructose, galactose, maltose, soluble starch, and dextrin causing the lowering of pH of the medium during culture. Sucrose did not inhibit the lipase production, but not caused any effect when added. 3. $K_2HPO_4$ as phosphate salt and $MgSO_4{\cdot}7H_2O$ as magnesium salt were the most effective in the lipase production. 4. The addition of olive oil, soybean oil, and coconut oil respectively increased the enzyme production and especially 1% olive oil increased it by 50%. 5. The enzyme production increased slightly on the addition of yeast extract to $0.05{\sim}0.07%$. 6. The optimum composition of the medium for the lipase production by Rhizopus japonicus was in the composition of soybean meal 2%; $K_2HPO_4{\cdot}$ 0.5%; $(NH_4)_2SO_4$ 0.1%; $MgSO_4\;7H_2O$ 0.05%; yeast extract 0.05%; olive oil 1%. The maximum production of the lipase was attained by the incubation far 48hrs under the optimum incubation condition.

  • PDF

Functional Characterization and Application of the HpOCH2 Gene, Encoding an Initiating $\alpha$l,6-Mannosyltransferase, for N-glycan Engineering in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Moo-Woong;Kim, Eun-Jung;Kim, Jeong-Yoon;Rhee, Sang-Ki;Kang, Hyun-Ah
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.278-281
    • /
    • 2004
  • The $\alpha$1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 plays a key role for the outer chain initiation of the N-linked oligosaccharides. A search for Hansenula polymorpha genes homologous to S. cerevisiae OCHI (ScOCH1) has revealed seven open reading frames (ORF100, ORF142, ORF168, ORF288, ORF379, ORF576, ORF580). All of the seven ORFs are predicted to be a type II integral membrane protein containing a transmembrane domain near the amino-terminal region and has a DXD motif, which has been found in the active site of many glycosyltransferases. Among this seven-membered OCH1 gene family of H. polymorpha, we have carried out a functional analysis of H. polymorpha ORF168 (HpOCH2) showing the highest identity to ScOCH1. Inactivation of this protein by disruption of corresponding gene resulted in several phenotypes suggestive of cell wall defects, including hypersensitivity to hygromycin B and sodium deoxycholate. The structural analysis of N-glycans synthesized in HpOCH2-disrupted strain (Hpoch2Δ) and the in vitro $\alpha$1,6-mannosyltransferase activity assay strongly indicate that HpOch2p is a key enzyme adding the first $\alpha$1,6-mannose residue on the core glycan Man$_{8}$GlcNAc$_2$. The Hpoch2Δ was further genetically engineered to synthesize a recombinant glycoprotein with the human compatible N-linked oligosaccharide, Man$_{5}$GlcNAc$_2$, by overexpression of the Aspergillus saitoi $\alpha$1,2-mannosidase with the 'HDEL” ER retention signal.gnal.

  • PDF