• 제목/요약/키워드: mannose enzyme II

검색결과 8건 처리시간 0.026초

Cloning and Expression of the Gene Encoding Mannose Enzyme II of the Corynebacterium glutamicum Phosphoenolpyruvate-Dependent Phosphotransferase System in Escherichia coli

  • Lee, Jung-Kee;Sung, Moon-Hee;Yoon, Ki-Hong;Pan, Jae-Gu;Yu, Ju-Hyun;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권1호
    • /
    • pp.1-5
    • /
    • 1993
  • The gene for mannose enzyme II of phosphoenolpyruvate-dependent phosphotransferase system from Corynebacterium glutamicum KCTC 1445 was cloned into Escherichia coli ZSC113 using plasmid pBR 322. The recombinant plasmid, designated pCTS3, contained 2.2 kb DNA fragment, and the physical map of the cloned DNA fragment was determined. The E. coli ptsM ptsG mutant transformed with pCTS3 restored glucose and mannose fermentation ability, and grew well on these sugars as the sole carbon source in the minimal medium. The transform ant harboring pCTS3 showed a PTS-mediated repression of growth on maltose by mannose analogue, 2-deoxyglucose. The specificity of the response to 2DG therefore indicates that the cloned DNA fragment carries mannose enzyme II gene.

  • PDF

Cloning, Expression, and Nucleotide Sequencing of the Gene Encoding Glucose Permease of Phosphotransferase System from Brevibacterium ammoniagenes

  • Yoon, Ki-Hong;Yim, Hyouk;Jung, Kyung-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권3호
    • /
    • pp.214-221
    • /
    • 1998
  • A Brevibacterium ammoniagenes gene coding for glucose/mannose-specific enzyme II ($EII^{Glc}$) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned by complementing an Escherichia coli mutation affecting a ptsG gene, and the complete DNA nucleotide sequence was determined. The cloned gene was identified to be a ptsG, which enables the E. coli transportment to use glucose more efficiently than mannose as the sole carbon source in an M9 minimal medium. The ptsG gene of B. ammoniagenes consists of an open reading frame of 1,983 nucleotides putatively encoding a polypeptide of 661 amino acid residues and a TAA stop codon. The deduced amino acid sequence of the B. ammoniagenes $EII^{Glc}$ shows, at $46\%$, the highest degree of sequence similarity with the Corynebacterium glutamicum EII specific for both glucose and mannose. In addition, the $EII^{Glc}$ shares approximately $30\%$ sequence similarities with sucrose-specific and ${\beta}$-glucoside-specific EIIs of the several bacteria belonging to the glucose-PTS class. The 161-amino-acid C-terminal sequence of $EII^{Glc}$ is also similar to that of E. coli enzyme $IIA^{Glc}$, specific for glucose ($EIIA^{Glc}$). The B. ammoniagenes $EII^{Glc}$ consists of three domains; a hydrophobic region (EIIC) and two hydrophilic regions (EIIA, EIIB). The arrangement of structural domains, IIBCA, of the $EII^{Glc}$ is identical to those of EIIs specific for sucrose or ${\beta}$-glucoside. While the domain IIA was removed from the B. ammoniagenes $EII^{Glc}$ the remaining domains IIBC were found to restore the glucose and mannose-utilizing capacity of E. coli mutant lacking $EII^{Glc}$ activity with $EIIA^{Glc}$ of the E. coli mutant. $EII^{Glc}$ contains a histidine residue and a cysteine residue which are putative phosphorylation sites for the protein.

  • PDF

세포벽분해효소의 처리에 따른 감과실의 세포벽 유리 다당류의 변화 (Changes on the Components of Free Polysaccharide from Cell Wall of Persimmon Fruit by Treatments of Cell Wall Degrading Enzymes)

  • 신승렬;김미현
    • 한국식품저장유통학회지
    • /
    • 제2권1호
    • /
    • pp.173-183
    • /
    • 1995
  • This paper was carried out to investigate changes in chromatograms of polysacctatides and soluble pectins on Sephadex G-50 and non-cellulosic neutral sugars of polysaccharides isolated from cell wall of persimmon fruits treated with polygalacturonase and $\beta$-galactosidase in vitro. The chromatogram pattern of soluble pectins extracted from cell wall treated with $\beta$-galactosidase on Sephacryl S-500 column were similar to those of untreatment, but contents of soluble pectins treated with $\beta$-galactosidase were different from those of untreatment. The patterns of chromatograms In soluble pectins extracted from cell wall treated with polygalacturonase were more complex and lower molecular polymer than those of other cell wall-degrading enzyme treatments. Non-cellulosic neutral sugar of polysaccharides in fraction I of soluble material treated with polygalacturonase was rhamnose, those in fraction II were similar to those in fraction III and contents of arabinose, xylose and glucose were higher than contents of other non-cellulosic neutral sugars. Non-cellulosic neutral sugars of polysaccharides in fraction I in soluble material by $\beta$-galactosidase treatment were rhamnose, arabinose, galactose and mannose. Content of glucose of polysaccharides in fraction II was higher than that in fraction I . Non-cellulosic neutral sugars treated with mixed enzyme were rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose. Compositions of non-cellulosic neutral sugars of polysaccharides in fraction I were similar to those in fraction II and III.

  • PDF

Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Yoon, Ki-Hong;Lee, Kyu-Nam;Lee, Jung-Kee;Park, Se-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.582-588
    • /
    • 1999
  • A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

  • PDF

세포벽 분해효소의 처리에 따른 감과실의 세포벽 구성 비섬유성 중성당의 변화 (Changes in the Non-cellulosic Neutral Sugars of Cell Wall of Persimmon Fruit by Treatment of Cell Wall-Degrading Enzymes)

  • 김광수;신승렬;송준희;정용진
    • 한국식품영양과학회지
    • /
    • 제24권2호
    • /
    • pp.247-253
    • /
    • 1995
  • 추출한 감과실의 세포벽에 polygalacturonase, ${\beta}-galactosidase$ 및 이들의 혼합한 효소액을 in vitro에서 처리하여 세포벽 구성 비섬유성 중성당의 변화를 연구, 검토하였다. 세포벽 구성 비섬유성 중성당의 변화는 효소 처리구에서 무처리 보다 많았으며, polygalacturonase 처리구에서는 rhamnose, xylose, galactose 등이 감소하였고, 혼합효소 처리구에서는 arabinose, galactose, rhamnose, xylose 등이 감소하였으며, ${\beta}-galactosidase$ 처리구에서 arabinose, galactose 등이 감소되었다. Pectin의 비섬유성 중성당은 모든 효소처리구에서 rhamnose, galactose, arabinose가 현저히 감소하였으며, 특히 polygalacturonase 처리시에 보다 현저하게 감소하였다. Hemicellulose I의 경우 polygalacturonase 처리구는 rhamnose, arbinose, xylose의 함량이 무처리구에 비해 높았으며, ${\beta}-galactosidase$ 처리구에서는 rhamnose와 xylose의 함량은 높았고, arbinose, mannose, galactose는 감소하였다. 혼합효소 처리구에서는 xylose, mannose, galactose가 높은 반면 arbinose와 galactose는 낮았다. 한편 hemicellulose II에서 비섬유성 중성당의 변화는 polygalacturonase 처리구에서 xylose와 glucose가 감소하였으나 다른 처리구에서는 뚜렷한 변화가 없었다. 이상의 결과를 종합하여 볼 때 polygalacturonase는 pectin을 분해함으로써 arbinose, galactose, rhamnose를 유리하고, ${\beta}-galactosidase$는 galactan과 arabinogalactan을 분해하여 galactose와 arabinose를 유리시키는 것으로 사료된다.

  • PDF

Clinical Problems in ML II and III: Extra-skeletal Manifestations

  • Park, Sung Won
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제2권1호
    • /
    • pp.5-7
    • /
    • 2016
  • Mucolipidoses II and III alpha/beta (ML II and ML III) are lysosomal disorders in which the essential mannose-6-phosphate recognition marker is not synthesized onto lysosomal hydrolases and other glycoproteins. The disorders are caused by mutations in GNPTAB, which encodes two of three subunits of the heterohexameric enzyme, N-acetylglucosamine-1-phosphotransferase ML II, recognizable at birth, often causes intrauterine growth impairment and sometimes the prenatal "Pacman" dysplasia. The main postnatal manifestations of ML II include gradual coarsening of neonatally evident craniofacial features, early cessation of statural growth and neuromotor development, dysostosis multiplex and major morbidity by hardening of soft connective tissue about the joints and in the cardiac valves. Fatal outcome occurs often before or in early childhood. ML III with clinical onset rarely detectable before three years of age, progresses slowly with gradual coarsening of the facial features, growth deficiency, dysostosis multiplex, restriction of movement in all joints before or from adolescence, painful gait impairment by prominent hip disease. Cognitive handicap remains minor or absent even in the adult, often wheelchair-bound patient with variable though significantly reduced life expectancy. As yet, there is no cure for individuals affected by these diseases. So, clinical manifestations and conservative treatment is important. This review aimed to highlight the extra-skeletal clinical problems in ML II and III.

사상균(絲狀菌)의 지방분해효소(脂肪分解酵素)에 관(關)한 연구(硏究) 제2보(第2報) 분리사상균(分離絲狀菌) Rhizopus japonicus의 배양조건검토(培養條件檢討) (Studies on the Lipolytic Enzyme of Molds Part II. Cultural condition of Rhizopus japonicus)

  • 정만재
    • 한국식품과학회지
    • /
    • 제8권1호
    • /
    • pp.33-41
    • /
    • 1976
  • 1. 유기질소원(有機窒素源)으로는 soybean meal, 무기질소원(無機窒素源)으로는 $(NH_4)_2SO_4$가 lipase생산(生産)에 가장 효과(效果)이었다. 2. 배양중(培養中) 배지(培地)의 pH저하(低下)를 이르키는 xylose, glucose, fructose, galactose, mannose, maltose, soluble starch, dextrin을 탄소원(炭素源)으로 첨가(添加)하였을 때 lipase 생산(生産)이 심(甚)하게 저해(沮害)되었다. sucrose는 lipase생산(生産)을 저해(沮害)하지 않았으나 첨가효과(添加效果)는 인정(認定)되지 않았다. 3. 인산염(燐酸鹽)으로서는 $K_2HPO_4$, 마그네슘염(鹽)으로서는 $MgSO_4{\cdot}7H_2O$가 lipase생산(生産)에 가장 효과적(效果的)이었다. 4. Olive유(油), 대두유(大豆油) 및 야자유(油)의 첨가(添加)는 lipase생산(生産)을 증가(增加)시켰으며 1% olive유(油) 첨가시(添加時) lipase생산(生産)이 50% 증가(增加)되었다. 5. yeast extract $0.05{\sim}0.07%$첨가시(添加時) lipase생산(生産)이 약간 증가(增加)되었다. 6. 본균(本菌)의 lipase생산(生産)에 가장 적합(適合)한 배지(培地)는 soybean meal 2%, $K_2HPO_4$ 0.5%, $(NH_4)_2SO_4$ 0.1%, $MgSO_4{\cdot}7H_2O$ 0.05%, yeast extract 0.05%, olive유(油) 1%의 조성(組成)의 것으로서 최적배양조건하(最適培養條件下)에서 48시간(時間) 배양시(培養時)에 lipase생산(生産)이 최고(最高)에 도달(到達)하였다.

  • PDF

Functional Characterization and Application of the HpOCH2 Gene, Encoding an Initiating $\alpha$l,6-Mannosyltransferase, for N-glycan Engineering in the Methylotrophic Yeast Hansenula polymorpha

  • Kim, Moo-Woong;Kim, Eun-Jung;Kim, Jeong-Yoon;Rhee, Sang-Ki;Kang, Hyun-Ah
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2004년도 Annual Meeting BioExibition International Symposium
    • /
    • pp.278-281
    • /
    • 2004
  • The $\alpha$1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 plays a key role for the outer chain initiation of the N-linked oligosaccharides. A search for Hansenula polymorpha genes homologous to S. cerevisiae OCHI (ScOCH1) has revealed seven open reading frames (ORF100, ORF142, ORF168, ORF288, ORF379, ORF576, ORF580). All of the seven ORFs are predicted to be a type II integral membrane protein containing a transmembrane domain near the amino-terminal region and has a DXD motif, which has been found in the active site of many glycosyltransferases. Among this seven-membered OCH1 gene family of H. polymorpha, we have carried out a functional analysis of H. polymorpha ORF168 (HpOCH2) showing the highest identity to ScOCH1. Inactivation of this protein by disruption of corresponding gene resulted in several phenotypes suggestive of cell wall defects, including hypersensitivity to hygromycin B and sodium deoxycholate. The structural analysis of N-glycans synthesized in HpOCH2-disrupted strain (Hpoch2Δ) and the in vitro $\alpha$1,6-mannosyltransferase activity assay strongly indicate that HpOch2p is a key enzyme adding the first $\alpha$1,6-mannose residue on the core glycan Man$_{8}$GlcNAc$_2$. The Hpoch2Δ was further genetically engineered to synthesize a recombinant glycoprotein with the human compatible N-linked oligosaccharide, Man$_{5}$GlcNAc$_2$, by overexpression of the Aspergillus saitoi $\alpha$1,2-mannosidase with the 'HDEL” ER retention signal.gnal.

  • PDF