• Title/Summary/Keyword: manned and unmanned driving

Search Result 5, Processing Time 0.02 seconds

Manual and Automatic Steering System Using Pulley and Electrical Clutch for Manned and Unmanned Electric Vehicle (풀리 및 전자클러치를 이용한 유무인 전기자동차용 수동 및 자동조향장치)

  • Lee, Yong-Jun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.597-602
    • /
    • 2012
  • In this paper, a manual and automatic steering system for electric vehicles capable of manned and unmanned driving is proposed. The automatic steering systems, EPS, MDPS, used in conventional engine based car includes the problem of handle lock phenomenon while driving of overloading, therefore it has a drawback to apply to manned and unmanned electric vehicles. By using electronic clutch and pulleys, the proposed manual and automatic steering mechanism was designed so that it is possible to convert from manual to automatic steering mode. To experiment the performance of the proposed steering system, we made an experimental setup of an electric vehicle. We confirmed that the proposed manual and automatic steering system was useful for manned and unmanned electric vehicles.

A Study on Requirement Analysis of Unmanned Combat Vehicles: Focusing on Remote-Controlled and Autonomous Driving Aspect (무인전투차량 요구사항분석 연구: 원격통제 및 자율주행 중심으로)

  • Dong Woo, Kim;In Ho, Choi
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.40-49
    • /
    • 2022
  • Remote-controlled and autonomous driving based on artificial intelligence are key elements required for unmanned combat vehicles. The required capability of such an unmanned combat vehicle should be expressed in reasonable required operational capability(ROC). To this end, in this paper, the requirements of an unmanned combat vehicle operated under a manned-unmanned teaming were analyzed. The functional requirements are remote operation and control, communication, sensor-based situational awareness, field environment recognition, autonomous return, vehicle tracking, collision prevention, fault diagnosis, and simultaneous localization and mapping. Remote-controlled and autonomous driving of unmanned combat vehicles could be achieved through the combination of these functional requirements. It is expected that the requirement analysis results presented in this study will be utilized to satisfy the military operational concept and provide reasonable technical indicators in the system development stage.

Automatic Train Operation System Requirements Examination for Driverless Operation and Application Case of Urban Maglev Train (무인운전을 위한 자동열차운전장치 시스템 요구조건 검토 및 도시형 자기부상열차 적용사례)

  • Kang, Kyeong-Yong;Cho, Young-Wan;Park, Hee-Jun;Park, Chae-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1100-1107
    • /
    • 2011
  • The light-rail system which is recently being built in Korea is a train control system based on driverless operation, and the train control system for urban maglev train under construction at the moment in Youngjong-Do, Incheon is pushed ahead based on driverless operation. In this paper, it compares train operation cases with manned operation and unmanned operation to examine system requirements for unmanned driving on train and detects system requirements of automatic train operation device for unmanned operation by analyzing unmanned operation cases which are currently operating or planed project and also introduces automatic train operation of urban maglev train and verifies whether the system for unmanned driving meets the requirements.

  • PDF

A Study on Mine Detection System with Automatic Height Control (높이 자동제어가 가능한 차량 장착형 지뢰탐지장치에 대한 연구)

  • Kang, Sin Cheon;Chung, Hoe Young;Jung, Dae Yon;Sung, Gi Yeul;Kim, Do Jong;Kim, Ji Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.558-565
    • /
    • 2017
  • The vehicle-mounted mine detection system with large detection sensor modules can search wide areas with a fast detection speed. To mount the heavy mine detectors on a manned or unmanned vehicle, it is necessary to design the detector driving mechanism and control system based on the considerations driven from the characteristic analysis and the operation requirements of the detection system. Furthermore, while operating the mine detector mounted on a mobile vehicle, it is significant to keep the height from the ground to sensors within a certain distance in order to get a qualified detection performance. As the mine detection sensor, we used ground penetrating radar widely used to geotechnical exploration, mine detection and etc. In this paper, we introduce a driving mechanism through analyzing the characteristics of the vehicle-mounted mine detection system. We also suggest a method to automatically control the distance between the ground and GPR by utilizing the GPR output values, used to detect mines at the same time.

Development of the Operating Cost Estimation Models to Evaluate the Validity of Urban Railway Investment (도시철도 투자타당성 평가를 위한 운영비용 추정모형 개발)

  • KIM, Dong Kyu;PARK, Shin Hyoung;KIM, Ki Hyuk
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.5
    • /
    • pp.465-475
    • /
    • 2016
  • Since inaccurate demand estimation for recent urban rail construction may result in financial burden to cities, precise prediction for operating cost as well as construction costs is necessary to avoid or reduce budget loss of the local or central government. The operating cost is directly related to the public fare and affect a policy to determine the rate system. Therefore, there is a pressing need to develop an estimating model for reliable operating cost of urban railway. This study introduces a new model to estimate the operating cost with new variables. It provides a better prediction in accuracy and reliability compared to the existing model, considering the feature of urban railway. For verification of our model, railway operation data from a few cities for the last five years were comprehensively examined to determine variables that affect the operating cost. The operating cost was estimated in a dummy regression model using five independent variables, which were average distance between stations, daily trains distance, total passenger capacity of a train in a train, driving mode(manned/unmanned), and investment type(financial/private).