• Title/Summary/Keyword: manipulators

Search Result 765, Processing Time 0.029 seconds

A Family of a Decentralized Adaptive Control for Robotic Manipulators (로봇 매니퓰레이터의 분산 적응제어군)

  • Shin, Kyu-Hyeon;Lee, Yong-Yeun;Lee, Soo-Han
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.737-742
    • /
    • 2004
  • In this paper, a family of decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of the manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of numerical simulations show that the system is stable, and has excellent trajectory tracking performance.

  • PDF

Decentralized Adaptive Control of Robot Manipulators (로봇 매니퓰레이터의 분산 적응제어)

  • 이용연;신규현;이수한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.959-962
    • /
    • 2003
  • In this paper, a decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of robot manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of computer simulations show that the robot manipulator system is stable, and has excellent trajectory tracking performance.

  • PDF

Decentralized Adaptive Control of Robot Manipulators (로봇 매니플레이터의 분산 적응제어)

  • 이수한;이용연;신규현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.110-116
    • /
    • 2004
  • In this paper, a decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of robot manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of numerical simulations show that the system is stable, and has excellent trajectory tracking performance.

A survey on the control methods for the redundant robot manipulators (여유자유도를 갖는 로보트 매니퓨레이터의 제어방법에 관한 조사 연구)

  • 서일홍;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.26-30
    • /
    • 1986
  • This survey paper presents a review of control methods for redundant robot manipulators. Use of redundant degree of freedoms by local and global optimization techniques are described in terms of the Jacobian matrix equation for the redundant robot manipulators. Relevant problems for further use of redundant robot manipulators are then discussed.

  • PDF

Hybrid position/force control of flexible manipulators

  • Kim, Jin-Soo;Suzuki, Kuniaki;Konno, Atsushi;Uchiyama, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.408-411
    • /
    • 1995
  • In this paper, we discuss the force control of flexible manipulators. Since the force control of flexible manipulators with planar one or two links using the distributed-parameter modeling has been the subject of a considerable number of publications until now, real time computations of the force control schemes are possible. But, application of those control schemes to multi-link spatial manipulators is fairly complicated. In this paper, we apply a concise hybrid position/force control scheme for a flexible manipulators. We use a lumped-parameter modeling for the flexible manipulators. The Hamilton's principle is applied to derive the equations of motion for the system and then, state-space model is obtained by the Lagrange's method. Finally, comparison of simulation results with experimental results is given to show the performance of our method.

  • PDF

Cooperative Control of Two Spatial Flexible Manipulators -Verification by Experiments- (3차원 양팔 유연 매니퓨레이터의 협조제어 (실험에 의한 검증))

  • Kim, Jin-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.87-94
    • /
    • 2000
  • In this paper we discuss the control scheme on cooperative control of two flexible manipulators working in 3D space. We propose a control scheme which consists of hybrid position/force control and vibration suppression control. Hybrid position/force control is extended from the scheme for two cooperating rigid manipulators to that for flexible ones. in addition to the control vibration suppression control based upon a lumped-mass-spring model of the flexible manipulators is applied. To illustrate the validity of the proposed control scheme we show experimental results. in the experiment a rigid object is handled by two cooperating flexible manipulators in 3D space.

  • PDF

Study on Optimal Design of Fault-Tolerant Spatial Redundant Manipulators (고장에 견디는 공간형 여유자유도 매니퓰래이터의 최적설계에 관한 연구)

  • Kim, Whee-Kuk;Kim, Dong-Ku;Yi, Byung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.97-108
    • /
    • 1996
  • Optimal design of fault-tolerant, spatial type redundant manipulators is treated in this paper. Design objective is to guarantte three degree-of -freedom translational motions in the task space, upon failure of one arbitrary joint of 4 degree-of-freedom manipulators. Noticing the nonfault-tolerant characteristics of current, wrist-type industrial manipulators, five different fault-tolerant spatial-type manipulators which have 4 degree-of-freedom structures with one joint redundancy are suggested. Faault-tolerant character-sitics of two redundant manipulators anr investigated based on the analysis of the self-motion and the null-space elements. Finally, in order to maximize the fault-tolerant capability, optimal design is performed for a spatial-type manipulator with respect to the global isotropic index, and the performance enhancement of the optimized case is shown by simulation.

  • PDF

control of Two-Coopearationg Robot Manipulators for Fixtureless Assembly (무고정조립작업을 위한 협조 로봇 매니퓰레이터의 제어)

  • 최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.427-431
    • /
    • 1996
  • A modeling of the dynamics of two cooperating robot manipulators doing assembly job such as peg-in-hole while coordinating the payload along the desired path is proposed. The system is uncertain due to the unknown mass and moment of inertia of the manipulators and the payload. To control the system, a robust control algorithm is proposed. The control algorithm includes fuzzylogic. By the fuzzy logic, the magnitude of the input torque of the manipulators is controlled not to go over the hardware saturation with keeping path tracking errors bounded.

  • PDF

Integral Sliding Mode Control for Robot Manipulators (로봇 매니퓰레이터를 위한 적분 슬라이딩 모드 제어)

  • Yoo, Dong-Sang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1266-1269
    • /
    • 2008
  • We propose an integral sliding mode control for robot manipulators guaranteeing that sliding motion exists starting from an initial time. Also, we prove the asymptotic stability for robot manipulators using three important properties in the robot dynamics: skew-symmetry, positive-definiteness, and boundedness of robot parameter matrices. From illustrative examples, we show that the proposed method effectively controls for robot manipulators.

Review on dexterity measures for kinematically redundant manipulators (여유 자유도를 갖는 매니퓨레이터의 능숙성 지수에 대한 Review)

  • 정원지;최혁렬;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.62-67
    • /
    • 1990
  • A number of performance measures have been proposed for the quantification of dexterity for kinematically redundant manipulators. The use of such measures is especially important for kinematically redundant manipulators since they can satisfy the subtasks such as singularity avoidance and obstacle avoidance in addition to satisfying a specification of end-effector motion. In this paper, the advantages and disadvantages of performance measures proposed up to date are compared through simulations under the same environment. Besides, a new dexterity index for manipulators with multiple degrees of redundancy is proposed and shown to be effective through the simulation.

  • PDF