Consider the mean distance of Brownian motion on Riemannian manifolds. We obtain the first three terms of the asymptotic expansion of the mean distance by means of Stochastic Differential Equation(SDE) for Brownian motion on Riemannian manifold. This method proves to be much simpler for further expansion than the methods developed by Liao and Zheng(1995). Our expansion gives the same characterizations as the mean exit time from a small geodesic ball with regard to Euclidean space and the rank 1 symmetric spaces.
We study the asymptotic expansion in small time of the mean distance of Brownian motion on Riemannian manifolds. We compute the first four terms of the asymptotic expansion of the mean distance by using the decomposition of Laplacian into homogeneous components. This expansion can he expressed in terms of the scalar valued curvature invariants of order 2, 4, 6.
본 논문은 다량의 고차원 얼굴 표정 모션 데이터를 2차원 공간에 분포시키고, 애니메이터가 이 공간을 항해하면서 원하는 표정들을 실시간 적으로 선택함으로써 얼굴 표정 애니메이션을 생성하는 방법을 기술한다. 본 논문에서는 약 2400여개의 얼굴 표정 프레임을 이용하여 표정공간을 구성하였다. 표정공간의 생성은 임의의 두 표정간의 최단거리의 결정으로 귀결된다. 표정공간은 다양체 공간으로서 이 공간내의 두 점간의 거리는 다음과 같이 근사적으로 표현한다. 임의의 마커간의 거리를 표시하는 거리행렬을 사용하여 각 표정의 상태를 표현하는 표정상태벡터를 정의한 후, 두 표정이 인접해 있으면, 이를 두 표정 간 최단거리(다양체 거리)에 대한 근사치로 간주한다. 그리하여 인접 표정들 간의 인접거리가 결정되면, 이들 인접거리들을 연결하여 임의의 두 표정 상태간의 최단거리를 구하는데, 이를 위해 Floyd 알고리즘을 이용한다. 다차원 공간인 표정공간을 가시화하기 위해서는 CCA 투영기법을 이용하여 2차원 평면에 투영시켰다 얼굴 애니메이션은 사용자 인터베이스를 사용하여 애니메이터들이 2차원 공간을 항해하면서 실시간으로 생성한다.
This study is an experimental study on the characteristics of emission by changing catalytic converter position for cold-start. The measurements are done a changing of the distance between exhaust manifold and catalytic converter. It measured temperature of exhaust manifold, before and after catalytic converter at each position of experimental condition. and measured the characteristics of emission which is HC, CO, $CO_{2}$ and lambda at each position of experimental condition. The results show a few advantage about reduction of HC and CO as catalytic converter's temperature is raised quickly as closed exhaust manifold. but $CO_{2}$ has not the same trend of HC and CO. From measurement value of lambda, reduction effects of $NO_{x}$ are known a few advantage as increase of the distance between exhaust manifold and catalytic converter.
Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from the fact that thermal expansions of the runners are restricted by inlet flange clamped to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Since the failure of an exhaust manifold is mainly caused by geometric constraints between the cylinder head and the manifold, the thermal stress can be controlled by geometric factors. The generic geometric factors include the inter distance (2R), the distance from the head to the outlet (L), the tube diameter(d) and the tube thickness (t). This criteria based on elastic analysis up to onset of yield apparently indicate that the pre-stress also reduces the factor; however, high temperature relaxation may reduce this effect at later operation stage.
본 논문은 다량의 고차원 얼굴 표정 모션 데이터를 2차원 공간에 분포시키고, 애니메이터가 이 공간을 항해하면서 원하는 표정들을 실시간 적으로 선택함으로써 얼굴 표정 애니메이션을 생성하는 방법을 기술한다. 본 논문에서는 약 2400여개의 얼굴 표정 프레임을 이용하여 표정공간을 구성하였다. 표정공간의 생성은 임의의 두 표정간의 최단거리의 결정으로 귀결된다. 표정공간은 다양체 공간으로서 이 공간내의 두 점간의 거리는 다음과 같이 근사적으로 표현한다. 임의의 마커간의 거리를 표시하는 거리행렬을 사용하여 각 표정의 상태를 표현하는 표정상태벡터를 정의한 후, 두 표정이 인접해 있으면, 이를 두 표정 간 최단거리(다양체 거리)에 대한 근사치로 간주한다. 그리하여 인접 표정들 간의 인접거리가 결정되면, 이틀 인접거리들을 연결하여 임의의 두 표정 상태간의 최단거리를 구하는데, 이를 위해 Floyd 알고리즘을 이용한다. 다차원 공간인 표정공간을 가시화하기 위해서는 Sammon 매핑을 이용하여 2차원 평면에 투영시켰다. 얼굴 애니메이션은 사용자 인터페이스를 사용하여 애니메이터들이 2차원 공간을 항해하면서 실시간으로 생성한다.
This paper introduces non-manifold offsetting operations, which add or remove a uniform thickness from a given non-manifold model. Since these operations can be applied to not only solids but also wireframe or sheet objects, they are potentially useful for pipeline modeling, sheet metal and plastic part modeling, tolerance analysis, clearance checking, constant-radius rounding and filleting of solids, converting of abstracted models to solids, HC too1 path generation and so on. This paper describes mathematical properties and algorithms for non-manifold offsetting. In this algorithm, a sufficient set of tentative faces are generated first by offsetting all or a subset of the vertices, edges and faces of the non-manifold model. And then they are merged into a model using the Boolean operations. Finally topological entities which are within offset distance are removed. The partially modified offsetting algorithms for wireframes or sheets are also discussed in order to provide more practical offset models.
본 논문은 광학식 얼굴 모션 캡쳐 데이터를 재사용하여 원하는 얼굴 표정 애니메이션을 실시간에 생성하는 방법을 기술한다. 이 방법의 핵심요소는 얼굴 표정들 간의 거리를 정의하고 이를 이용하여 표정들을 적당한 공간에 분포시키는 방법과 이 공간을 사용하여 실시간 표정 애니메이션을 생성하기 위한 사용자 인터페이스 기법이다. 우리는 약 2400여개의 얼굴 표정 프레임 데이터를 이용하여 공간을 생성하였다. 그리고 사용자가 이 공간을 자유롭게 항해할 때, 항해경로 상에 위치한 얼굴 표정 프레임 데이터들이 연속적으로 선택되어 하나의 애니메이션이 생성되도록 하였다. 약 2400여개의 얼굴 표정 프레임 데이터들을 직관적인 공간상에 분포하기 위해서는 데이터와 데이터 사이의 거리를 계산해야할 필요가 있고, 각 데이터와 데이터 사이의 최단거리를 구하는데 있어서는 Floyd 알고리즘을 사용하며, 이를 이용하여 Manifold distance를 구한다. 직관적인 공간에서의 데이터 배치는 얼굴 표정 프레임 데이터들의 Manifold distance를 이용하여 Multidimensional Scaling을 적용하고, 이로부터 2D 평면에 균일하게 분포하였다. 우리는 이와 같은 방법으로 기존의 얼굴 표정 프fp임 데이터들 사이의 거리를 원형 그대로 살리면서 의미 있게 직관적인 공간에 분포한다. 그러므로 본 논문에서 제시한 기법은 사용자가 항해하고자 하는 얼굴 표정 프레임 데이터들이 항상 주변에 존재할 수 있기 때문에, 얼굴 표정 애니메이션을 생성하기 위해서 직관적인 공간을 제한 없고 자유로운 항해를 할 수 있다는 큰 장점을 가지고 있다. 또한 사용자가 원하는 얼굴 표정 애니메이션을 사용하기 쉬운 사용자 인터페이스를 이용하여 실시간으로 생성하여 확인 하고 재생성할 수 있다는 것도 매우 효율적이다.
다양체는 고차원 표본 데이터들 사이의 관계를 표현하기 위해 저차원 공간에서 생성된 구조로서 고차원 데이터인 영상과 3차원 인체 구성 데이터를 처리하는데 많이 사용되고 있다. 다양체 학습은 이러한 다양체를 생성하는 과정을 말한다. 그러나 다양체 학습을 이용한 포즈 추정은 학습하지 못한 실루엣 변화에 취약하다. 실루엣 변화는 2차원 영상에서 시점 변화, 포즈 변화, 사람 변화, 거리 변화, 잡영에 의해 발생되며, 이러한 변화를 하나의 다양체로 학습하기란 어렵다. 본 논문에서는 실루엣 변화를 유발하는 문제중 하나인 시점 변화에 대한 문제를 해결하고자 한다. 종래에 시점 변화에 상관 없이 포즈를 추정하는 방법에서는, 각 시점마다 다양체를 가지거나 사상 함수에서 시점에 관련한 요소들을 분리하석 별도의 다양체로 학습한다. 하지만 이러한 방법들은 복잡하고, 추정 과정에서 어떠한 시점의 다양체를통해 포즈를 추정할지 판단을 요구하며, 비교사 학습으로 인해 실루엣과 대응되는 3차원 인체 구성을 지정하기 어렵다. 본 논문에서는 시점 다양체, 포즈 다양체, 인체 구성 다양체를 편향된 다양체로 학습하여 사용하는 방법을 제안한다. 그리고 영상과 시점 다양체, 영상과 포즈 다양체, 인체 구성과 인체 구성 다양체, 포즈 다양체와 인체 구성 다양체 간에 사상 함수를 학습한다. 실험에서는 학습된 다양체와 사상 함수를 이용하여 24개의 시점에서 강인한 포즈 추정 결과를 보여주고 있다.
Tomova [8] gave an upper bound for the distance of a bridge surface for a knot with two different bridge positions in a 3-manifold. In this paper, we show that the result of Tomova [8, Theorem 10.3] can be improved in the case when there are two different bridge spheres for a link in $S^3$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.