• Title/Summary/Keyword: manganese oxide mineral

Search Result 38, Processing Time 0.019 seconds

Preparation of high Purity manganese oxide by Pyrolysis of solution extracted from ferromanganese dust in AOD process

  • Lee, Gye-Seung;Song, Young-Jun;Kim, Mi-Sung;Shin, Kang-Ho;Cho, Dong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.409-412
    • /
    • 2001
  • The high purity manganese oxides were made from the dust, generated in AOD process that produces a medium-low carbon ferromanganese and collected in the bag filter. Manganese oxide content in the dust was about 90%, and its phase was confirmed as Mn₃O₄. In the extraction of manganese, because of remaining amorphous MnO₂, the dust was reduced to MnO by roasting with charcoal. The pulp density of the reduced dust can control pH of the solution more than 4 and then Fe ion is precipitated to a ferric hydroxide. Because a ferric hydroxide co precipitates with Si ion etc, Fe, Si ion was removed f개m the solution. Heating made water to be volatized and nitrates was left in reactor Then nitrates were a liquid state and stirring was possible. Among the nitrates in reactor, only the manganese nitrate which have the lowest pyrolysis temperature pyrolyzed into β-MnO₂powder and NO₂(g) at the temperature less than 200℃. When the pyrolysis of manganese nitrate has been completed about 90%, injection of water stopped the pyrolysis. Nitrates of impurity dissolved and the spherical high purity β-MnO₂powders were obtained by filtering and washing. Mn₂O₃or Mn₃O₄ powder could be manufactured from β-MnO₂powder by controlling the heating temperature. Lastly, a manufactured manganese oxide particle has 99.97% purity.

  • PDF

Li+ Extraction Reactions with Ion-exchange type Lithium Manganese Oxide and Their Electronic Structures (이온교환형 리튬망간산화물의 리튬이온 용출특성 및 전자상태)

  • Kim, Yang-Soo;Chung, Kang-Sup;Lee, Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.860-864
    • /
    • 2002
  • $Li^{+}$ extraction reactions with ion-exchange type lithium manganese oxide in an aqueous phase were examined using chemical and x-ray diffraction (XRD) analysis. In the process of extraction reaction, the lithium manganese oxide showed a topotactic extraction of $Li^{+ }$ in the aqueous phase mainly through an ion-exchange mechanism, and the $Li^{+}$ extracted samples indicated a high selectivity and a large capacity for $Li^{+}$ . The electronic structures and chemical bonding properties were also studied using a discrete variational (DV)-X$\alpha$ molecular orbital method with cluster model of (Li$Mn_{12}$ $O_{40}$ )$^{27-}$ for tetrahedral sites and ($Li_{7}$ Mn $O_{38}$ )$^{3}$ for octahedral site in $Li_{1.33}$ $Mn_{1.67}$ / $O_{4}$ respectively. Li in the manganese oxides is highly ionized in both sites, but the net charge of Li was greater for tetrahedral sites than octahedral. These calculations suggest that the tetrahedral sites have higher $Li^{+}$ $H^{+}$ exchangeability than the octahedral sites, and are preferable for the selective adsorption for L $i^{+}$ ions.s.

Semi-quantitative Analysis of Manganese Oxide Mineral in Manganese Nodule From the East Siberian Sea (동시베리아해 망가니즈단괴의 산화망가니즈광물 반정량 분석)

  • Yu, Hye Jin;Shin, Eun Ju;Koo, Hyo Jin;Cho, Hyen Goo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.427-437
    • /
    • 2020
  • Manganese nodules, which are evaluated as potential metal resources, have been found in the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans. Manganese nodules exhibit strong variations in the morphology, internal texture, chemical composition and mineralogy as they grow. The relationship between the texture and chemical elemental composition during the growth process is well documented, but the mineral composition variation during the growth process is not. Because the manganese oxide minerals in nodules are fine-grained and poorly crystalline, quantitative analysis for the mineral composition is challenging for the bulk nodule sample. This study investigated the internal texture and Mn-oxide mineral composition of manganese nodules obtained from the East Siberian Sea. Semi-quantitative analysis was attempted for three main Mn-oxide minerals constituting the manganese nodules (i.e., todorokite, buserite and birnessite) using the peak area ratio of X-ray diffraction analysis graphs. In the East Siberian Sea manganese nodules, birnessite is more abundant than buserite or todorokite, and no correlation is found between the mineral composition and the internal texture. Instead a correlation is found between the relative content of todorokite and the lamellae depth. The todorokite content tends to increase from the surface to the core of the nodules, which can be attributed to a recrystallization process or difference in the growth rate within the nodule. This study shows that semi-quantitative analysis of manganese oxide minerals using the peak area ratio is useful in the mineralogical study of manganese nodules.

Rare Metal Contents and Their Implications of Seabed Mineral Resources Explored by Korea (한국이 탐사 중인 해저광물자원의 희유금속 함량과 의미)

  • Pak, Sang-Joon;Moon, Jai-Woon;Lee, Kyeong-Yong;Chi, Sang-Bum
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.455-466
    • /
    • 2010
  • Seabed mineral resources explored by Korea are categorized into major three types of deposit; manganese nodule, manganese crust and polymetallic sulfides. Pt displays high enrichment factors (400, ore/crust ratios) in manganese nodule. Rare earth oxide content in manganese nodule ranges from 0.037 to 0.302 REO % with mean value of 0.12 REO %. Both of Te and Pt are enriched elements in manganese crust, displaying enrichment factors of 10800 and 150, respectively. Rare earth oxide's contents of manganese crust are slightly higher than manganese nodule's (0.013~0.387 REO %, average = 0.18 REO %). Se and In are outstanding rare metals from seabed polymetallic sulfides, showing enrichment factors of 1300 and 110, respectively. Au (0.8~26.3 g/t) and Ag (0.9~348.0 g/t) are another enriched elements in polymetallic sulfides. The main concern at exploiting seabed mineral resource will be a securing rare metals for high-technology industries and rare metals from subsea mineral deposits will add economic values to commodity candidates such like Co, Ni and Cu.

A Study on Electronic Structures of Spinel-Type Manganese Oxides for Lithium Ion Adsorbent using DV-Xα Molecular Orbital Method (DV-Xα 분자궤도법을 이용한 리튬이온 흡착제용 스피넬형 망간산화물의 전자상태에 관한 연구)

  • Kim, Yang-Su;Jeong, Gang-Seop;Lee, Jae-Cheon
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.274-278
    • /
    • 2002
  • Discrete-variational(DV)-$X{\alpha}$ method was applied to investigate the electronic structures of spinel- type manganese oxide which is well known to the high performance adsorbent or cathode material for lithium ion. The results of DOS(density of states) and Mulliken population analysis showed that Li was nearly fully ionized and interactions between Mn and O were strong covalent bond. The effective charge of Li and Mn was +0.77 and +1.44 respectively and the overlap population between Mn and O was 0.252 in $LiMn_2O_4$. These results from DV-X$\alpha$ method were well coincided with the experimental result by XPS analysis and supported the feasibility of theoretical interpretation for the $LiMn_2O_4$ compound.

Characteristics of Non-Spherical Manganese Nodule from the East Siberian Sea (동시베리아해 비구형 망가니즈단괴의 특성)

  • Koo, HyoJin;Park, MuSeong;Seo, ChoongMan;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.241-253
    • /
    • 2021
  • Manganese nodules have been found in the shallow water depth of the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans, but detailed study for them were rarely investigated. Manganese nodules, collected from the East Siberian Sea through the Arctic Expedition using Araon ice braking vessel, have a high potential for Mn mineral resources because they have high Mn content with high Mn/Fe ratio. This study investigated the external form, size and weight, internal texture for the non-spherical manganese nodule, which has about 7 % of total nodule from the East Siberian Sea. This study also researched the relative Mn-oxide mineral composition using the peak area ratio of X-ray diffraction pattern and their chemical composition. All data obtained from non-spherical nodules were compared with the spherical ones. Ellipsoidal, platy and irregular types are common among 5 groups of non-spherical manganese nodule based on the external form, and major axis and weight have positive relationship. All non-spherical manganese nodules have core mainly composed of mud sediments. The average Mn oxide mineral contents in nodules are birnessite, buserite and todorokite in descending order. Although mineral composition does not show any correlation with the external form, kind of core or internal structure, todorokite and buserite contents tend to increase and birnessite content decrease from the surface to the core in the nodule. Non-spherical manganese nodules have higher Mn content and Mn/Fe ratio than those from the shallow water depth of the Arctic Sea and even in the deep-sea of the Pacific and Indian Ocean. Although non-spherical nodule is larger and heavier, and has lower Mn content and Mn/Fe ratio than spherical nodule, there are not any differences in mineral composition and internal structure between them. Almost all manganese nodules collected from the East Siberian Sea are attributed to diagenetic process, because they are higher than 5 in Mn/Fe ratio.

Treatment of Metal Wastes with Manganese Nodules (망간단괴 제연 시 금속계 폐자원의 처리)

  • Park Kyung-Ho;Nam Chul-Woo;Kim Hong-In;Park Jin-Tae
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.17-21
    • /
    • 2005
  • Deep-sea Manganese nodules was treated with reduction-smelting process with adding the spent Ni-Cd battery or the cobalt contained spent catalyst for recovery of nickel and cobalt metals. The nickel in the spent Ni-Cd battery could be recovered by adding $5\%$ coke as a reducing agent regardless of the amount of battery added. However, to recover cobalt from the spent catalyst, it is require to add more coke for reduction of cobalt oxide in the catalyst. The treatment of metal wastes with manganese nodules can contribute to lower the cost for the processing of nodules and to facilitate the recycling of metal wastes.

Equilibrium and kinetic studies of an electro-assisted lithium recovery system using lithium manganese oxide adsorbent material

  • Lee, Dong-Hee;Ryu, Taegong;Shin, Junho;Kim, Young Ho
    • Carbon letters
    • /
    • v.28
    • /
    • pp.87-95
    • /
    • 2018
  • This study examined the influence of operating parameters on the electrosorptive recovery system of lithium ions from aqueous solutions using a spinel-type lithium manganese oxide adsorbent electrode and investigated the electrosorption kinetics and isotherms. The results revealed that the electrosorption data of lithium ions from the lithium containing aqueous solution were well-fitted to the Langmuir isotherm at electrical potentials lower than -0.4 V and to the Freundlich isotherm at electrical potentials higher than -0.4 V. This result may due to the formation of a thicker electrical double layer on the surface of the electrode at higher electrical potentials. The results showed that the electrosorption reached equilibrium within 200 min under an electrical potential of -1.0 V, and the pseudo-second-order kinetic model was correlated with the experimental data. Moreover, the adsorption of lithium ions was dependent on pH and temperature, and the results indicate that higher pH values and lower temperatures are more suitable for the electrosorptive adsorption of lithium ions from aqueous solutions. Thermodynamic results showed that the calculated activation energy of $22.61kJ\;mol^{-1}$ during the electrosorption of lithium ions onto the adsorbent electrode was primarily controlled by a physical adsorption process. The recovery of adsorbed lithium ions from the adsorbent electrode reached the desorption equilibrium within 200 min under reverse electrical potential of 3.5 V.

Characteristics of Manganese Nodule from the East Siberian Sea (동시베리아해 망간단괴의 특성)

  • Koo, Hyo Jin;Cho, Hyen Goo;Yoo, Chan Min;Jin, Young Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.219-227
    • /
    • 2017
  • Manganese (Mn) nodules in the Arctic Sea have been founded in the Kara Sea and Barents Sea, but mineral and chemical compositions have been rarely investigated. In this study, mineralogical and geochemical characteristics of Mn nodules obtained during the Arctic Expedition ARA07C in northern East Siberian Sea were identified, and then genesis of Mn nodules were estimated by using these characteristics. Main manganese oxide minerals constituting the manganese nodule were buserite, birnessite, and vernadite. The Mn nodules generally represent radiated and massive texture, and the layered texture was developed restrictively. The radiated texture, main feature of the manganese nodule in the East Siberian Sea, is mainly composed of cuspate-globular microstructure. Compared with the Mn nodules in Pacific and Indian Oceans, Mn nodules of the East Siberian Sea are abundant in Mn, but Fe is too scarce. There was no difference in the chemical composition and microstructures between outer and inner part of nodule. Therefore, nodules are most likely to have only one genesis during their growth, and all of nodules indicate the diagenetic in $Mn-Fe-(Cu+Ni+Co){\times}10$ ternary diagram. It is considered that the manganese nodules in the East Siberian Sea are characterized by high Mn contents because manganese contents in the Arctic Ocean were mainly resulted from river or coastal erosion and most of them are trapped in the Arctic Ocean.

Trend on the Recycling Technologies for the used Manganese Dry Battery by the Patent Analysis (특허(特許)로 본 폐망간전지 재활용(再活用) 기술(技術) 동향(動向))

  • Shon, Jeong-Soo;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Tae-Hyun;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.76-84
    • /
    • 2008
  • There are several kinds of battery such as zinc-air battery, lithium battery, manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery and alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used manganese dry battery were analyzed. The range of search was limited in the open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents were analyzed by the years, countries, companies, and technologies.