• 제목/요약/키워드: manganese ferrite

검색결과 52건 처리시간 0.022초

알콜 탈수법에 의한 Mn-Zn Ferrite 분체 제조시 pH의 영향 (Effect of pH on the Preparation of Manganese Zinc Ferrite Powder by Alcoholic Dehydration of Citrate/formate Solution)

  • 김창범;신효순;이대희;김창현;이병교
    • 한국세라믹학회지
    • /
    • 제32권10호
    • /
    • pp.1123-1130
    • /
    • 1995
  • In the preparation of manganese zinc ferrite powders by alcoholic dehydration of citrate/formate solution. The effect of pH change on precipitation was investigated. The pH range for obtaining stable precipitates was studied. The glassy phase was obtained when the pH value of solution is higher than 5, and the formation mechanism of glassy phase was suggested. Below pH 5, the stable precipitates were formed, and the optimal pH was 2. Formation of glassy phase was accounted for the change of surface charge by pH change. The change of surface charge is caused by the interparticular agglomeration. The precipitate was redissolved into the water on the surface of precipitate itself and through the polymerization, it agglomerated. This mechanism is tought to be similar to that of viscous flow.

  • PDF

철-망간 화합비 변화에 따르는 망간 페라이트의 물성 (The Physical Properties of Mn-Ferrite According to the Variation of Fe-Mn Composition Ratio)

  • 김유상;황용길
    • 한국재료학회지
    • /
    • 제2권2호
    • /
    • pp.126-132
    • /
    • 1992
  • 시약급 망간염과 폐건전지에서 회수한 망간염 수용액을 전해액으로 사용하고, 0.2% 저탄소 연강을 가용성 양극으로, SUS 304 스테인레스 강을 음극으로 하여 전기분해 법에 의해 생성된 망간 페라이트의 화학조성 및 열적, 자기적 성질을 조사한 결과 다음과 같다. $Mn_{x}Fe_{3-x}O_4$(O$200^{\circ}C$까지는 중량감소량이 직선적으로 증가하였다. 망간함량과 가열온도가 증가할수록 보자력이 감소하고 포화자화도 감소하는 경향을 보였다. 시약급 염화망간염을 전해액으로하여 생성시킨 망간 페라이트가 황산망간 및 폐건전지에서 회수한 망간염을 전해액으로 사용하여 제조한 망간 페라이트 보다 포화자화값이 높았다. $200^{\circ}C,\;300^{\circ}C로 가열하였을 때, 폐건전지에서 침출한 황산망간염을 전해액으로 하여 생성시킨 망간 페라이트가 시약급 황산망간염을 전해액으로 하여 생성시킨 망간 페라이트 보다 포화자화와 잔류자화값이 높았다. 생성된 입도는 모두 구형이었고, 시약급 황산망간염을 전해액으로 하여 생성시킨 망간 페라이트에서는 $0.1{\mu}m$, 폐건전지에서 침출한 황산망간염을 전해액으로 하여 생성시킨 망간 페라이트에서는 $0.5{\mu}m$ 범위의 미립자로 생성되었다.

  • PDF

고장력 냉연강판에서 미세조직에 대한 연속어닐링조건의 영향 (Effects of Continuous Annealing Parameters on Microstructures in a Cold-Rolled High Strength Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제17권5호
    • /
    • pp.283-292
    • /
    • 2004
  • The effects of the annealing parameters on microstructures were examined in a cold-rolled high strength steel containing 0.1% C, 0.5% Si, 1.5% Mn, and 0.04% Nb. It was impossible to avoid martensite in the microstructure even though the continuous annealing parameters were controlled. This indicates that the alloying elements such as silicon and manganese contributing to manganese equivalent($Mn_{eq}$) should be reduced to produce the ferrite-pearlite microstructure for the solid solution and precipitation hardened steel. It was found that a decrease in the rapid cooling temperature to $520^{\circ}C$ was effective to change the microstructure from ferrite-martensite to ferrite-pearlite-martensite. Typical dual-phase properties exhibiting a low yield ratio and a continuous yielding behavior were obtained when the rapid cooling temperature was in the range of $680^{\circ}C$ to $600^{\circ}C$. The critical volume fraction of martensite for the typical properties of dual-phase steel was about 11 percent.

Effects of Mn Substitution on Crystallographic and Magnetic Properties of Li-Zn-Cu Ferrites

  • Lee, Young Bae;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.210-214
    • /
    • 2014
  • The effects of manganese substitution on the crystallographic and magnetic properties of Li-Zn-Cu ferrite, $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$ ($0.0{\leq}x{\leq}0.8$), were investigated. Ferrites were synthesized via a conventional ceramic method. We confirmed the formation of crystallized particles using X-ray diffraction, field emission scanning electron microscopy and $M{\ddot{o}}ssbauer$ spectroscopy. All of the samples showed a single phase with a spinel structure, and the lattice constants linearly decreased as the substituted manganese content increased, and the particle size of the samples also somewhat decreased as the doped manganese content increased. All the $M{\ddot{o}}ssbauer$ spectra can be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites, and one doublet. The cation distribution was determined from the variation of the $M{\ddot{o}}ssbauer$ parameters and of the absorption area ratio. The magnetic behavior of the samples showed that an increase in manganese content led to a decrease in the saturation magnetization, whereas the coercivity was nearly constant throughout. The maximum saturation magnetization was 73.35 emu/g at x = 0.0 in $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$.

Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles

  • Kurtinaitiene, Marija;Mazeika, Kestutis;Ramanavicius, Simonas;Pakstas, Vidas;Jagminas, Arunas
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.1-14
    • /
    • 2016
  • Superparamagnetic iron oxide nanoparticles (Nps), composed of magnetite, $Fe_3O_4$, or maghemite, ${\gamma}-Fe_2O_3$, core and biocompatible polymer shell, such as dextran or chitozan, have recently found wide applications in magnetic resonance imaging, contrast enhancement and hyperthermia therapy. For different diagnostic and therapeutic applications, current attempt is focusing on the synthesis and biomedical applications of various ferrite Nps, such as $CoFe_2O_4$ and $MnFe_2O_4$, differing from iron oxide Nps in charge, surface chemistry and magnetic properties. This study is focused on the synthesis of manganese ferrite, $MnFe_2O_4$, Nps by most commonly used chemical way pursuing better control of their size, purity and magnetic properties. Co-precipitation syntheses were performed using aqueous alkaline solutions of Mn(II) and Fe(III) salts and NaOH within a wide pH range using various hydrothermal treatment regimes. Different additives, such as citric acid, cysteine, glicine, polyetylene glycol, triethanolamine, chitosan, etc., were tested on purpose to obtain good yield of pure phase and monodispersed Nps with average size of ${\leq}20nm$. Transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), $M\ddot{o}ssbauer$ spectroscopy down to cryogenic temperatures, magnetic measurements and inductively coupled plasma mass spectrometry were employed in this study.

Mechanism of intragranular ferrite formation in heat-affected zone of titanium killed steel

  • Terasaki, Hidenori;Komizo, Yu-Ichi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.197-201
    • /
    • 2009
  • A lot of work is carried out concerning to acicular ferrite formation in the weld metal of high strength and low-alloy steel. Those results are suggesting that oxides that contain titanium elements provides nucleation site of intragranular ferrite, referred as acicular ferrite. Thus, when intragranular ferrite is expected to form in heat-affected zone, oxide containing titanium element should be formed in the steel. However, normal steel is deoxidized by using aluminum element (Al-killed steel) with little oxygen content. It means almost oxygen is deoxidized with aluminum elements. In the present work, in order to form the acicular ferrite in the heat affected zone, with the same concept in the case of weld metal, the steel deoxidized with titanium element (titanium killed-steel) is prepared and the acicular ferrite formation is observed in detail by using laser-conforcal microscopy technique. The confocal technique makes it possible that the morphological change along the phase transformation from austenite to ferrite is in-situ tracked. Thus, the inclusion that stimulated the ferrite nucleation could be directly selected from the observed images, in the HAZ of the Ti-killed steel. The chemical composition of the selected inclusion is analyzed and the nucleation potential is discussed by changing the nucleation site with boron element. The potency for the ferrite nucleation is summarized and the existence of effective and ineffective manganese sulfide for nucleation is made clear.

  • PDF

발전기 정지중 진단을 위하여 개발된 유도결합 마그네틱 프로브의 성능특성 (Performance Characteristics of an Inductively Coupled Magnetic Probe Developed for Off-line Monitoring of a Rotating Machine)

  • 박노준;양상현;공태식;김희동;박대희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.46-46
    • /
    • 2010
  • In order to detect exact corona discharge point at stator winding of a rotating machine, an inductively coupled magnetic probe has been developed, which consists of U-shaped and truncated manganese ferrite inductor as a helix. The measured current intensity is somewhat higher than commercially developed probe. It has been shown that the measured intensity of proposed probe is suitable for manual localization as to off-line stator winding monitoring of rotating machine.

  • PDF

60kgf/$\textrm{mm}^2$급 C-MO계 와이어를 사용한 서브머지드 아크 용접금속 인성 및 작업성에 미치는 플럭스 조성의 영향 (Effect of Flux Composition on Weld Metal Toughness and Workability in Submerged Aye Welding with 60kgf/$\textrm{mm}^2$ Grade C-Mo Type Wires)

  • 방국수;안영호
    • Journal of Welding and Joining
    • /
    • 제14권6호
    • /
    • pp.93-100
    • /
    • 1996
  • Effect of a flux composition on weld metal toughness in submerged arc welding with 60kgf/$\textrm{mm}^2$ grade C-Mo type wires was investigated and interpreted in terms of weld metal microstructure and hardenability. Flux workability was also studied by characterizing a weld bead profile. Compared to other weld metals, .weld metal used alumina basic flux with nickel showed lowest oxygen content, highest hardenability and the most acicular ferrite. The highest impact toughness of that weld metal, however, was attributed to the tough matrix due to the nickel rather than to the larger amount of acicular ferrite. Manganese silicate flux had better workability than alumina basic flux, showing broader welding conditions resulting in a depth-to-width ratio of 0.5. The composition of oxides in the weld metal was dependent on the flux composition, showing MnO-SiO$_2$-TiO in manganese silicate flux and MnO-SiO$_2$-Al$_2$O$_3$-TiO in alumina basic flux. MnO-SiO$_2$composition in both oxides was similar to a tephroite.

  • PDF

Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method

  • Noh, Kwang Mo;Lee, Young Bae;Kwon, Woo Hyun;Kang, Jeoung Yun;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.308-314
    • /
    • 2016
  • Cobalt-, zinc-, and nickel-zinc-substituted nano-size manganese ferrite powders, $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, $Mn_{0.8}Zn_{0.2}Fe_2O_4$ and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$, were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently studied. The $MnFe_2O_4$ ferrite powder annealed at temperatures above 523 K exhibited a spinel structure, and the particle size increased as the annealing temperature increased. All ferrites annealed at 773 K showed a single spinel structure, and the lattice constants and particle size decreased with the substitution of Co, Zn, and Ni-Zn. The $M{\ddot{o}}ssbauer$ spectrum of the $MnFe_2O_4$ ferrite powder annealed at 523 K only showed a doublet due to its superparamagnetic phase, and the $M{\ddot{o}}ssbauer$ spectra of the $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, and $Mn_{0.8}Zn_{0.2}Fe_2O_4$ ferrite powders annealed at 773 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of the $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$ ferrite powder annealed at 773 K consisted of two Zeeman sextets and one quadrupole doublet due to its ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explained the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. Relative to pure $MnFe_2O_4$, the saturation magnetizations and coercivities were larger in $Mn_{0.8}Co_{0.2}Fe_2O_4$ and smaller in $Mn_{0.8}Zn_{0.2}Fe_2O_4$, and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$. These variations could be explained using the site distribution equations, particle sizes and magnetic moments of the substituted ions.