• Title/Summary/Keyword: maneuvering patterns

Search Result 12, Processing Time 0.022 seconds

Tracking Error Performance of Tracking Filters Based on IMM for Threatening Target to Navel Vessel

  • Fang, Tae-Hyun;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.456-462
    • /
    • 2007
  • Tracking error performance is investigated for the typical maneuvering pattern of the anti-ship missile for tracking filters based on IMM filter in both clear and cluttered environments. Threatening targets to a navel vessel can be categorized into having three kinds of maneuvering patterns such as Waver, Pop-Up, and High-Diver maneuvers, which are classified according to launching platform or acceleration input to be applied. In this paper, the tracking errors for three kinds of maneuvering targets are represented and are investigated through simulation results. Studying estimation errors for each maneuvering target allows us to have insight into the most threatening maneuvering pattern and to construct the test maneuvering scenario for radar system validation.

A Simplified Horizontal Maneuvering Model of a RIB-Type Target Ship (RIB형 표적정의 수평면 조종운동 간략모델)

  • Yoon, Hyeon-Kyu;Yeo, Dong-Jin;Fang, Tae-Hyun;Yoon, Kun-Hang;Lee, Chang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.572-578
    • /
    • 2007
  • A Rigid Inflatable Boat (RIB) is now widely used for commercial and military purpose. In this paper, it is supposed that seven-meter-class RIB be used as an unmanned target ship for naval training. In order to develop many tactical maneuvering patterns of a target ship, a simple horizontal maneuvering model of a RIB is needed. Therefore, models of speed and yaw rate are constructed as the first-order differential equations based on Lewandowski#s empirical formula for steady turning circle diameter of a conventional planning hull. Some parameters in the models are determined using the results of sea trial tests. Finally, proposed models are validated through the comparison of the simulation result with the sea trial result for a specific scenario. Even though a simple model does not represent the horizontal motion of a RIB precisely, however, it can be used enough to develop tactical trajectory patterns.

A Nonlinear Information Filter for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1669-1674
    • /
    • 2004
  • In this paper, a nonlinear information filter (IF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, a nonlinear IF is used in place of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

  • PDF

A Study on the Safe Maneuvering Technology Based on the Thermal Calculation of Membrane Type LNG Carrier (멤브레인형 LNGC의 열계산에 기초한 안전운항기술에 관한 연구)

  • Jin, Chang-Fu;Kim, Kyung-Kuen;Oh, Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1192-1200
    • /
    • 2008
  • This paper is concerned with the thermal design of the $138,000m^3$ class membrane type LNGC. To predict the temperature distribution, BOG and BOR, 3-dimensional numerical calculation was carried-out for the quarter of No.3 LNG tank. These sequence analyses were performed under the standard conditions of IMO ship design condition, USCG ship design condition and the Korean flag LNGC's route condition according to the 6-voyage modes. As the results, temperature behavior, heat flux, total penetrating heat, BOG and BOR were obtained, and those were compared with the maneuvering results considering the real temperature variation of air and sea water temperature at noon time. For securing the safety of LNGC during the ballast voyage, optimum control patterns of pressure and temperature in LNG tank is suggested in this paper.

Performance Evaluation of the Modified IMMPDA Filter Using 3-D Maneuvering Targets In Clutter (클러터 환경하에서 3 차원 기동표적을 사용한 수정된 IMMPDA 필터의 성능 분석)

  • 김기철;홍금식;최성린
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.211-211
    • /
    • 2000
  • The multiple targets tracking problem has been one of main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimension filter, input estimation filter, interacting multiple model (IMM) filter, federated variable dimension filter with input estimation, probable data association (PDA) filter etc. have been proposed to address the tracking and sensor fusion issues. In this paper, two existing tracking algorithms, i.e. the IMMPDA filter and the variable dimension filter with input estimation (VDIE), are combined for the purpose of improving the tracking performance of maneuvering targets in clutter. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns i.e. Waver, Pop-Up, and High-Diver motions, are defined and are applied to the modified IMMPDA filter considered as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMMPDA filter than the standard IMM filter are demonstrated through computer simulations.

  • PDF

An IMM Algorithm for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.310-318
    • /
    • 2004
  • In this paper, an unscented Kalman filter (UKF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, an UKF is used because of the drawbacks of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

Performance Evaluation of the Modified Interacting Multiple Model Filter Using 3-D Maneuvering Target (3차원 기동표적을 사용한 수정된 상호작용 다중모델필터의 성능 분석)

  • Park, Sung-Lin;Kim, Ki-Cheol;Kim, Yong-shik;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.445-453
    • /
    • 2001
  • The multiple targets tracking problem has been one of the main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimen-sion filter, input estimation filter, interacting multiple model(IMM) filter, dederated variable dimension filter with input estimation, etc., have proposed to address the tracking and sensor fusion issues. In this pa- per, two existing tracking algorithm, i.e, the IMM filter and the variable dimension filter with input estima-tion(VDIE), are combined for the purpose of improving the tracking performance for maneuvering targets. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns, i.e., waver, pop-up, and high-diver motions, are defined and are applied to the modified IMM filter as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMM filter than the standard IMM filter are demonstrated though computer simulations.

  • PDF

Federated Information Mode-Matched Filters in ACC Environment

  • Kim Yong-Shik;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, a target tracking algorithm for tracking maneuvering vehicles is presented. The overall algorithm belongs to the category of an interacting multiple-model (IMM) algorithm used to detect multiple targets using fused information from multiple sensors. First, two kinematic models are derived: a constant velocity model for linear motions, and a constant-speed turn model for curvilinear motions. Fpr the constant-speed turn model, a nonlinear information filter is used in place of the extended Kalman filter. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. The model-matched filter used in multi-sensor environments takes the form of a federated nonlinear information filter. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. In this paper, the structural features and information sharing principle of the federated information filter are discussed. The performance of the suggested algorithm using a Monte Carlo simulation under the two patterns is evaluated.

Performance Analysis of SDINS using Matlab/Simulink (Matlab/Simulink를 이용한 SDINS의 성능 해석)

  • Hong, Young-Sun;Kwon, Tae-Hwan;Kwon, Yong-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.132-142
    • /
    • 2000
  • This paper includes a study on the performance analysis of SDINS by a simulator using Matlab/Simulink. The performance model is considered gravity and Coriolis force, and a barometer is included to damp down diversity of a perpendicular axis error. Using the simulator, the performance included gyro sensor errors was analyzed in various maneuvering patterns. Also, the performance is virtually presented for the variation of error parameters of gyro and accelerometer under GUI.

  • PDF

Calculation of Turbulent Flows around a Ship Model in Drift Motion (사항중인 모형선 주위의 난류 유동 계산)

  • Kim Y. G.;Kim J. J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.66-72
    • /
    • 1999
  • A numerical simulation method has been under development for solving turbulent flows around a ship model in maneuvering motion using the Reynolds Averaged Navier-Stokes equations. The method used second-order finite differences, collocated grids, pressure-Poisson equation and four-stage Runge-Kutta scheme as key components of the solution method. A modified Baldwin-Lomax model is used for the turbulence closure. This paper presents a preliminary result of the computational study on turbulent flows past a ship model in drift motion. Calculations are carried out for a Series 60 $C_B=0.6$ ship model, for which detailed experimental data are available. The results of the present calculations are compared with the experimental data for hydrodynamic forces acting on the model as well as velocity distributions at longitudinal sections. Only fair agreements has been achieved. The computational results show the complex asymmetrical shear flow patterns including three-dimensional separations followed by formation of bilge vortices both in bow and stern regions.

  • PDF