• Title/Summary/Keyword: mandibular posterior tooth

Search Result 138, Processing Time 0.024 seconds

Incidence of the Fourth Canal in Maxillary and Mandibular First Molars

  • Seo, Jeong-Il;Hwang, Ho-Keel
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.574.1-574
    • /
    • 2001
  • Maxillary first molar, the "6-year molar", is the tooth largest in volume and most complex in root and root canal anatomy. Therefore, maxillary first molar is possibly the most treated, least understood. It is the posterior tooth with the highest endodontic failure rate and unquestionably one of the most important teeth. The earliest permanent posterior tooth to erupt, the mandibular first molar seems to be the most frequently in need of endodontic treatment.(omitted)

  • PDF

Alveolar ridge expansion-assisted orthodontic space closure in the mandibular posterior region

  • Ozer, Mete;Akdeniz, Berat Serdar;Sumer, Mahmut
    • The korean journal of orthodontics
    • /
    • v.43 no.6
    • /
    • pp.302-310
    • /
    • 2013
  • Orthodontic closure of old, edentulous spaces in the mandibular posterior region is a major challenge. In this report, we describe a method of orthodontic closure of edentulous spaces in the mandibular posterior region accelerated by piezoelectric decortication and alveolar ridge expansion. Combined piezosurgical and orthodontic treatments were used to close 14- and 15-mm-wide spaces in the mandibular left and right posterior areas, respectively, of a female patient, aged 18 years and 9 months, diagnosed with skeletal Class III malocclusion, hypodontia, and polydiastemas. After the piezoelectric decortication, segmental and full-arch mechanics were applied in the orthodontic phase. Despite some extent of root resorption and anchorage loss, the edentulous spaces were closed, and adequate function and esthetics were regained without further restorative treatment. Alveolar ridge expansion-assisted orthodontic space closure seems to be an effective and relatively less-invasive treatment alternative for edentulous spaces in the mandibular posterior region.

Evaluation of Tooth Movement and Arch Dimension Change in the Mandible Using a New Three-dimensional Indirect Superimposition Method

  • Oh, Hyun-Jun;Baek, Seung-Hak;Yang, Il-Hyung
    • Journal of Korean Dental Science
    • /
    • v.7 no.2
    • /
    • pp.66-79
    • /
    • 2014
  • Purpose: To analyze the amount and pattern of tooth movement and the changes in arch dimension of mandibular dentition after orthodontic treatment using a new three-dimensional (3D)-indirect superimposition method. Materials and Methods: The samples consisted of fifteen adult patients with class I bialveolar protrusion and minimal anterior crowding, treated by extraction of four first premolars with conventional sliding mechanics. After superimposition of 3D-virtual maxillary models before and after treatment using best-fit method, 3D-virtual mandibular model at each stage was placed into a common coordinate of superimposition using 3D-bite information, which resulted in 3D-indirect superimposition for mandibular dentition. The changes in mandibular dental and arch dimensional variables were measured with Rapidform 2006 (INUS Technology). Paired t-test was used for statistical analysis. Result: The anterior teeth moved backward, displaced laterally, and inclined lingually. The posterior teeth showed statistically significant contraction toward midsagittal plane. The amounts of backward movement of anterior teeth and forward movement of posterior teeth showed a ratio of 6 : 1. Although the inter-canine width increased slightly (0.8 mm, P<0.05), the inter-second premolar, inter-first molar, and inter-second molar widths decreased significantly with similar amounts (2.2 mm, P<0.05; 2.3 mm, P<0.01; 2.3 mm, P<0.001). The molar depth decreased (6.7 mm, P<0.001) but canine depth did not change. Conclusion: A new 3D-indirect superimposition of the mandibular dentitions using best-fit method and 3D-bite information can present a guideline for virtual treatment planning in terms of tooth position and arch dimension.

Localization of mandibular canal and assessment of the remaining alveolar bone in posterior segment of the mandible with single missing tooth using cone-beam computed tomography: a cross sectional comparative study

  • Alrahaimi, Saif Fahad;Venkatesh, Elluru
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.2
    • /
    • pp.100-105
    • /
    • 2017
  • Objectives: Localization of the mandibular canal (MC) and measurement of the height and width of the available alveolar bone at the proposed implant site in the posterior segment of the mandible using cone-beam computed tomography (CBCT) in patients with a single missing tooth. Materials and Methods: A cross-sectional study was performed where CBCT scans of the patients with a single missing tooth in the posterior segment of the mandible-premolar, I (1st) molar, and II (2nd) molar were used. The scans were assessed using OnDemand3D software (version 1.0; CyberMed Inc., Seoul, Korea) for localization of the MC asnd remaining alveolar bone both vertically (from the superior position of the MC to the crest of the alveolar ridge) and horizontally (buccolingual, 3 mm below the crest of the alveolar ridge). The findings were statistically analyzed using independent t-test. Results: A total of 120 mandibular sites (40 sites for each of the three missing premolar, I molar, and II molar) from 91 CBCT scans were analyzed. The average heights (from the alveolar crest to the superior margin of the MC) at the premolar, I molar, and II molar areas were $15.19{\pm}2.12mm$, $14.53{\pm}2.34mm$, and $14.21{\pm}2.23mm$, respectively. The average widths, measured 3 mm below the crest of the alveolar ridge, at the premolar, I molar, and II molar areas were $6.22{\pm}1.96mm$, $6.51{\pm}1.75mm$, and $7.60{\pm}2.08mm$, respectively. There was no statistically significant difference between males and females regarding the vertical and horizontal measurements of the alveolar ridges. Conclusion: In the study, the measurements were averaged separately for each of the single missing teeth (premolar, I molar, or II molar), giving more accurate information for dental implant placement.

COMPLICATIONS OF THE IMPLANT-SUPPORTED POSTERIOR MANDIBULAR SINGLE RESTORATIONS WITH MESIAL CANTILEVER (하악구치 임플란트 지지 단일수복에서 근심 캔틸레버가 임플란트 합병증에 미치는 영향)

  • Shin, He-Sung;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.4
    • /
    • pp.248-252
    • /
    • 2009
  • Purpose: This retrospective study was performed to analyze the relationship between complications of the posterior mandibular single crowns and distance from the adjacent teeth to the implant. Subjects and Methods: Of the patients who presented Ewha Womans University Mokdong Hospital & Yonsei University Dental Hospital with missing of the posterior mandibular molar and restored with implant-supported 18 Single crowns between 1996 thru 2007, 115 patients had been followed after crown delivery. The subjects were divided into complication-followed group and a control without any problems. The distance from the most distal tooth to the implant were measured. The prosthetic & biologic complications were reviewed by the cantilever distance and analyzed by abutment type, age & gender statistically using SAS version 9.1 (SAS Inc., USA). Results and Conclusion The results were as follows; 1) The posterior mandibular single crown with cantilever showed higher incidence of follow-up complications upon logistic analysis (p<0.05). 2) The prosthetic and biologic complications are related with the cantilever distance with 2.1 odds ratio and 3.39 cut-off value of specificity & sensitivity by SPSS 12.0. 3) The complications are neither significant in abutment types nor age & gender.

Protraction of mandibular molars through a severely atrophic edentulous space in a case of juvenile periodontitis

  • Wu, Jian-chao;Zheng, Yu-ting;Dai, Yi-jun
    • The korean journal of orthodontics
    • /
    • v.50 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Moving the mandibular posterior teeth into a severely atrophic edentulous space is a challenge. A carefully designed force-and-moment system that results in bodily protraction of the posterior teeth with balanced bone resorption and apposition is needed in such cases. This report describes the treatment of a 19-year-old woman with missing mandibular first molars due to juvenile periodontitis. Miniscrews were used as absolute anchorage during protraction of the mandibular second and third molars. Bodily mesial movement of the mandibular second and third molars was achieved over a distance of 11 to 17 mm after 39 months of orthodontic treatment.

Posterior dental compensation and occlusal function in adults with different sagittal skeletal malocclusions

  • Hwang, Soonshin;Choi, Yoon Jeong;Jung, Sooin;Kim, Sujin;Chung, Chooryung J.;Kim, Kyung-Ho
    • The korean journal of orthodontics
    • /
    • v.50 no.2
    • /
    • pp.98-107
    • /
    • 2020
  • Objective: The aim of this study was to compare posterior tooth inclinations, occlusal force, and contact area of adults with different sagittal malocclusions. Methods: Transverse skeletal parameters and posterior tooth inclinations were evaluated using cone beam computed tomography images, and occlusal force as well as contact area were assessed using pressure-sensitive films in 124 normodivergent adults. A linear mixed model was used to cluster posterior teeth into maxillary premolar, maxillary molar, mandibular premolar, and mandibular molar groups. Differences among Class I, II, and III groups were compared using an analysis of variance test and least significant difference post-hoc test. Correlations of posterior dental inclinations to occlusal function were analyzed using Pearson's correlation analysis. Results: In male subjects, maxillary premolars and molars had the smallest inclinations in the Class II group while maxillary molars had the greatest inclinations in the Class III group. In female subjects, maxillary molars had the smallest inclinations in the Class II group, while maxillary premolars and molars had the greatest inclinations in the Class III group. Occlusal force and contact area were not significantly different among Class I, II, and III groups. Conclusions: Premolar and molar inclinations showed compensatory inclinations to overcome anteroposterior skeletal discrepancy in the Class II and III groups; however, their occlusal force and contact area were similar to those of Class I group. In subjects with normodivergent facial patterns, although posterior tooth inclinations may vary, difference in occlusal function may be clinically insignificant in adults with Class I, II, and III malocclusions.

3-dimensional reconstruction of mandibular canal at the interforaminal region using micro-computed tomography in Korean

  • Jeon, Yong Hyun;Lee, Chul Kwon;Kim, Hee-Jung;Chung, Jae-Heon;Kim, Heung-Joong;Yu, Sun-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.470-475
    • /
    • 2017
  • PURPOSE. The purpose of this study was to identify the complex course of the mandibular canal using 3D reconstruction of microCT images and to provide the diagram for clinicians to help them understand at the interforaminal region in Korean. MATERIALS AND METHODS. Twenty-six hemimandibles obtained from cadavers were examined using microCT, and the images were reconstructed. At both the midpoint of mental foramen and the tip of anterior loop, the bucco-lingual position, the height from the mandibular inferior border, the horizontal distance between two points, and position relative to tooth site on the mandibular canal were measured. The angle that the mental canal diverges from the mandibular canal was measured in posterior-superior and lateral-superior direction. RESULTS. The buccal distance from the mandibular canal was significantly much shorter than lingual distance at both the mental foramen and the tip of anterior loop. The mandibular canal at the tip of anterior loop was significantly located closer to buccal side and higher than at the mental foramen. And the mental canal most commonly diverged from the mandibular canal below the first premolar by approximately $50^{\circ}$ posterior-superior and $41^{\circ}$ lateral-superior direction, which had with a mean length of 5.19 mm in front of the mental foramen, and exited to the mental foramen below the second premolar. CONCLUSION. These results suggest that it could form a hazardous tetrahedron space at the interforaminal region, thus, the clinician need to pay attention to the width of a premolar tooth from the mental foramen during dental implant placement.

Finite-element analysis of the center of resistance of the mandibular dentition

  • Jo, A-Ra;Mo, Sung-Seo;Lee, Kee-Joon;Sung, Sang-Jin;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • Objective: The aim of this study was to investigate the three-dimensional (3D) position of the center of resistance of 4 mandibular anterior teeth, 6 mandibular anterior teeth, and the complete mandibular dentition by using 3D finite-element analysis. Methods: Finite-element models included the complete mandibular dentition, periodontal ligament, and alveolar bone. The crowns of teeth in each group were fixed with buccal and lingual arch wires and lingual splint wires to minimize individual tooth movement and to evenly disperse the forces onto the teeth. Each group of teeth was subdivided into 0.5-mm intervals horizontally and vertically, and a force of 200 g was applied on each group. The center of resistance was defined as the point where the applied force induced parallel movement. Results: The center of resistance of the 4 mandibular anterior teeth group was 13.0 mm apical and 6.0 mm posterior, that of the 6 mandibular anterior teeth group was 13.5 mm apical and 8.5 mm posterior, and that of the complete mandibular dentition group was 13.5 mm apical and 25.0 mm posterior to the incisal edge of the mandibular central incisors. Conclusions: Finite-element analysis was useful in determining the 3D position of the center of resistance of the 4 mandibular anterior teeth group, 6 mandibular anterior teeth group, and complete mandibular dentition group.