• Title/Summary/Keyword: management performance evaluation

Search Result 2,675, Processing Time 0.036 seconds

Effect of Different Slaughter Weights on Meat Quality, Fatty Acids and Flavor Component of Korean Woori Black Pig Loin and Belly

  • Hoa, Van-Ba;Song, Dong-Heon;Seol, Kuk-Hwan;Kang, Sun-Moon;Kim, Yun-Seok;Min, Ye-Jin;Cho, Soo-Hyun
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.4
    • /
    • pp.362-372
    • /
    • 2021
  • The present study was undertaken to investigate the quality characteristics of Korean Woori black pig (KWP) bellies and loins by different slaughter weight (SW) groups. The loin and belly samples collected from KWPs with different body weights (50, 75, 90, 105, and 120 kg) at 24 h post-mortem were used in the present investigation. The samples were analyzed for quality traits, fatty acid profiles, and volatile flavor compounds. Results showed that the fat content of the loin (8.64%) and belly samples (46.78%) was significantly higher in the 120 kg SW group compared to those of other SW groups (p<0.05). However, a lower protein content (12.20-12.67%) was found in the belly cuts of the heavier SW groups (105-120 kg) compared to those of the lighter SW groups (p<0.05). The lowest cooking loss (24.34%) was found in the loin cuts of the 120 kg SW group (p<0.05). Both the loin and belly cuts were observed to be redder in color with increasing SW (p<0.05). Higher oleic acid (C18:1, n9) and total monounsaturated fatty acid content and lower linolenic acid(C18:3, n3) and total polyunsaturated fatty acid content were observed in both cuts of the 120 kg SW group (p<0.05). Out of the flavor compounds identified, 11 and 17 compounds in the loin and belly, respectively, were associated with the SW. An increase in the SW resulted in increased concentrations of C18:1n9- and amino acid-derived flavor compounds. Overall, the meat samples of the heavier SW groups (120 kg) exhibited better quality and higher concentrations of volatile compounds associated with pleasant flavors. However, the meat of the 120 kg SW group also contained a much higher fat level (8.64 and 46.78% in the loin and belly, respectively) that may result in high trimming loss and hence a high rejection risk by consumers.

Feasibility of Economic Analysis of Riverfront Facility Based on Mobile Big Data (통신 빅데이터 기반 하천이용시설 사용성능 경제성평가기법개발)

  • Choi, Byeong Jun;Noh, Hee-Ji;Bang, Young Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.29-38
    • /
    • 2021
  • Riverfront facilities are river space facilities used by citizens for the rest and convenience. Recently, although the importance of efficient maintenance of riverfront facilities is increasing, damaging facilities cases are increasing due to frequent floods. Currently, the inspections and diagnosis of river space facilities are limited to the main flood control facilities. And the standards for the maintenance and management of the riverfront facilities are insufficient. Utilization survey, which is the standard for managing river space facilities, is also inefficient in terms of manpower consumption and economic feasibility. This study uses mobile big data to classify river usage and conducts a survey for usability of river facilities to derive economic evaluation for usage performance. In the future, if economical method system that considers safety, usability, and durability is conducted and demanding analysis for each convenience facility is evaluated, it is expected that the efficient maintenance of riverfront facilities is perfomed better and the use of rivers by citizens will further increase.

Visual Classification of Wood Knots Using k-Nearest Neighbor and Convolutional Neural Network (k-Nearest Neighbor와 Convolutional Neural Network에 의한 제재목 표면 옹이 종류의 화상 분류)

  • Kim, Hyunbin;Kim, Mingyu;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.229-238
    • /
    • 2019
  • Various wood defects occur during tree growing or wood processing. Thus, to use wood practically, it is necessary to objectively assess their quality based on the usage requirement by accurately classifying their defects. However, manual visual grading and species classification may result in differences due to subjective decisions; therefore, computer-vision-based image analysis is required for the objective evaluation of wood quality and the speeding up of wood production. In this study, the SIFT+k-NN and CNN models were used to implement a model that automatically classifies knots and analyze its accuracy. Toward this end, a total of 1,172 knot images in various shapes from five domestic conifers were used for learning and validation. For the SIFT+k-NN model, SIFT technology was used to extract properties from the knot images and k-NN was used for the classification, resulting in the classification with an accuracy of up to 60.53% when k-index was 17. The CNN model comprised 8 convolution layers and 3 hidden layers, and its maximum accuracy was 88.09% after 1205 epoch, which was higher than that of the SIFT+k-NN model. Moreover, if there is a large difference in the number of images by knot types, the SIFT+k-NN tended to show a learning biased toward the knot type with a higher number of images, whereas the CNN model did not show a drastic bias regardless of the difference in the number of images. Therefore, the CNN model showed better performance in knot classification. It is determined that the wood knot classification by the CNN model will show a sufficient accuracy in its practical applicability.

An Efficient Personal Information Collection Model Design Using In-Hospital IoT System (병원내 구축된 IoT 시스템을 활용한 효율적인 개인 정보 수집 모델 설계)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.140-145
    • /
    • 2019
  • With the development of IT technology, many changes are taking place in the health service environment over the past. However, even if medical technology is converged with IT technology, the problem of medical costs and management of health services are still one of the things that needs to be addressed. In this paper, we propose a model for hospitals that have established the IoT system to efficiently analyze and manage the personal information of users who receive medical services. The proposed model aims to efficiently check and manage users' medical information through an in-house IoT system. The proposed model can be used in a variety of heterogeneous cloud environments, and users' medical information can be managed efficiently and quickly without additional human and physical resources. In particular, because users' medical information collected in the proposed model is stored on servers through the IoT gateway, medical staff can analyze users' medical information accurately regardless of time and place. As a result of performance evaluation, the proposed model achieved 19.6% improvement in the efficiency of health care services for occupational health care staff over traditional medical system models that did not use the IoT system, and 22.1% improvement in post-health care for users who received medical services. In addition, the burden on medical staff was 17.6 percent lower on average than the existing medical system models.

Numerical Analysis on Development of Nozzle Shape for NOVEC Gas Extinguishing System (NOVEC가스 소화설비용 노즐 형상 설계에 대한 수치해석)

  • Yun, Jeong In;Jung, Kyung Kuk;Kim, Ji Sung;Kim, Sung Yoon;Rho, Beom-Seok;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.939-944
    • /
    • 2018
  • Clean fire extinguishing agents refer to chemical that can replace Halon 1211 and Halon 1310 according to the Montreal Protocol fermented to protect the Earth's ozone layer. In Korea and abroad, system standardization and performance evaluation of clean fire extinguishing agents are being carried out. This paper proposes an optimal nozzle shape by modeling and numerical analysis of various nozzle shapes based on general clean fire extinguishing system. The ejection speed of the nozzle can be improved by studying three - dimensional modeling of the nozzle for two shapes, Type A and B. Flow analysis was performed on the two types of nozzles and the gas velocity and pressure distribution were measured with different nozzle diameters. It was confirmed that the jetting speed was changed at the nozzle outlet according to the number and diameter of the nozzle holes. The flow rate increased with increasing the pressure regardless of the nozzle hole diameter. Based on the results obtained from the experiment, the K-factor value was deduced. Finally, a nozzle with a 12-hole structure with a 5-mm nozzle hole was proposed.

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

A Study on the Acquisiton Methods of Theater Collections (연극기록물의 수집방안 연구)

  • Jung, Eun Jin
    • The Korean Journal of Archival Studies
    • /
    • no.29
    • /
    • pp.35-78
    • /
    • 2011
  • This study is intended to recommend for acquisition methods of the theatre collection. Theatre activities is representative of the performing arts, and the Korea theatre history start from the modern history of Korea. In the meantime, theatre collections has already been lost by a lack of effort and management, and scattered most of the collections. In particular, a one-off nature and volatility of theatrical performances make future generations to enjoy the performances and to study should consult the relevant records. Therefore, collecting records can be very serious mission. In this study, theatre collections of the country which aims to collect and analyze the characteristics and type of theatre collections. Based on this information, collection scope, targets, priorities, acquisition level, method of collecting are proposed the following. First, collection scope is defined for the theatre related collections which was performed nationwide in the 1900s, the times that modern theatre was begun. The object includes related information of planning, administration, drama (script), directing, stage design, public relations, production, evaluation, personal records, biographical data, group data and space data. Second, the theatre collections are divided into records and historical records. Priority of collections object is determined by the historical value and the theatre performed by the support of public organization. Third, the acquisition level is divided into archived, mirrored, web linked and database, which is proposed by the determined levels of mandatory, recommend and discretion according to the characteristic of performance. Fourth, acquisition methods are suggested by the general acquisition methods of transfer, donation and purchase as well as the methods of copy, production, legal deposit, entry and web link etc. The acquisition of theatre collections is executed on digital-based environment, and a centralized authority control should be establishmented. And through the development of network with theatre's stakeholders and the cooperation of related organizations, theatre collections acquisition is feasible.

Study of In-Memory based Hybrid Big Data Processing Scheme for Improve the Big Data Processing Rate (빅데이터 처리율 향상을 위한 인-메모리 기반 하이브리드 빅데이터 처리 기법 연구)

  • Lee, Hyeopgeon;Kim, Young-Woon;Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.127-134
    • /
    • 2019
  • With the advancement of IT technology, the amount of data generated has been growing exponentially every year. As an alternative to this, research on distributed systems and in-memory based big data processing schemes has been actively underway. The processing power of traditional big data processing schemes enables big data to be processed as fast as the number of nodes and memory capacity increases. However, the increase in the number of nodes inevitably raises the frequency of failures in a big data infrastructure environment, and infrastructure management points and infrastructure operating costs also increase accordingly. In addition, the increase in memory capacity raises infrastructure costs for a node configuration. Therefore, this paper proposes an in-memory-based hybrid big data processing scheme for improve the big data processing rate. The proposed scheme reduces the number of nodes compared to traditional big data processing schemes based on distributed systems by adding a combiner step to a distributed system processing scheme and applying an in-memory based processing technology at that step. It decreases the big data processing time by approximately 22%. In the future, realistic performance evaluation in a big data infrastructure environment consisting of more nodes will be required for practical verification of the proposed scheme.

Evaluation of conceptual rainfall-runoff models for different flow regimes and development of ensemble model (개념적 강우유출 모형의 유량구간별 적합성 평가 및 앙상블 모델 구축)

  • Yu, Jae-Ung;Park, Moon-Hyung;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.105-119
    • /
    • 2021
  • An increase in the frequency and intensity of both floods and droughts has been recently observed due to an increase in climate variability. Especially, land-use change associated with industrial structure and urbanization has led to an imbalance between water supply and demand, acting as a constraint in water resource management. Accurate rainfall-runoff analysis plays a critical role in evaluating water availability in the water budget analysis. This study aimed to explore various continuous rainfall-runoff models over the Soyanggang dam watershed. Moreover, the ensemble modeling framework combining multiple models was introduced to present scenarios on streamflow considering uncertainties. In the ensemble modeling framework, rainfall-runoff models with fewer parameters are generally preferred for effective regionalization. In this study, more than 40 continuous rainfall-runoff models were applied to the Soyanggang dam watershed, and nine rainfall-runoff models were primarily selected using different goodness-of-fit measures. This study confirmed that the ensemble model showed better performance than the individual model over different flow regimes.

Evaluation of Ventilation Deficiecy in Elementary, Middle, and High Schools using Monte Carlo Simulation (Monte-Carlo 모의실험을 이용한 초·중·고등학교의 환기부족 평가)

  • Choe, Youngtae;Park, Jinhyeon;Kim, Eunchae;Ryu, Hyoensu;Kim, Dong Jun;Min, Kihong;Jung, Dayoung;Woo, Byung Lyul;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.627-635
    • /
    • 2020
  • Objectives: Indoor air quality has become more important aspeople spend most of their times indoors. Since students spend most of their times at home or at school, they are more likely to be exposed to indoor air pollutants. Ventilation in school classrooms can affect health and learning performance. In this study, ventilation deficiency was evaluated in school classrooms using Monte Carlo simulation. Methods: This study used sensor-based monitoring for six months to measure carbon dioxide (CO2) concentrations in classrooms in elementary, middle, and high schools. The volume of the classroom and the number of students were investigated, and the students' body surface area was used to calculate the CO2 emission rate. The distribution of ventilation rates was estimated by measured CO2 concentration and a mass-balance model using Monte Carlo simulation. Results: In the elementary, middle, and high schools, the average CO2 concentrations exceeded 1000 ppm, indicating that the ventilation rates were insufficient. The ventilation rates were deficient from July to August and in December, but showed relatively high ventilation rates in October. Forty-three percent of elementary schools, 56% of middle schools, and 62% of high schools showed insufficient ventilation rates. Conclusions: The ventilation rates calculated in elementary, middle and high schools were found to be quite insufficient. Therefore, proper management is needed to overcome the lack of ventilation and improve air quality.