• Title/Summary/Keyword: man-made objects

Search Result 64, Processing Time 0.026 seconds

Investigation of Applications Technology for High Resolution SAR Images (고해상도 SAR 영상의 활용기술 동향분석)

  • Yoon, Geun-Won;Koh, Jin-Woo;Lee, Yong-Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2010
  • SAR(Synthetic Aperture Radar) has characteristics well-suited for the measurement of geophysical parameters during day and night in all weather conditions. Recently, SAR data with high resolution acquired by satellites became available to the public. In such data, many features and phenomena of geometric structure of man-made objects and natural environments become observable. In this paper, we discuss main considerations including geometric distortion and coregistration for efficient utilization of high resolution SAR images. And, various advanced technologies in SAR application fields are introduced.

Geometric analysis of mobile mapping images sequence

  • Kang, Zhizhong;Zhang, Zuxun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.183-185
    • /
    • 2003
  • Spatially referenced mobile mapping (MM) images contain rich information of man-made objects , e.g. road centerlines, buildings, light poles, traffic signs ,billboards and line trees etc. Therefore, the applications in transportation, urban 3D reconstruction, utility management are implemented increasingly. It’s a fundamental issue lies in MM image process that how to orient this image in the object space including interior orientation of camera and the exterior orientation of image. In this paper, the algorithm of automatic acquirement of DC (Digital Camera) parameters based on MM images is illustrated. And then, the mapping between image space and object space for MM images is described.

  • PDF

A Study on Developing R&D Response Strategy to prepare Hazardous Space Situation (우주위험 대비를 위한 R&D 대응전략 연구)

  • Kim, Syeun;Cho, Sungki;Choi, Eunjung;Hong, Jeongyoo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Technical development have broaden human activity ranges and make human possible to defend the disasters which was undependable in the past. However, human's space activity brought a new kind of disaster to human. In the past, natural space objects was the only concern from the space, like the asteroid fallen on Chelyabinsk, Russia. But, nowadays, by the increasing number of the man-made space objects, these space kind of threat have diversified and become very real. So, nationwide safety strategy should be established to protect the people. In this paper, we suggest three points to make the decision for establishing the strategy based on the AHP analysis results.

Automatic 3D Object Digitizing and Its Accuracy Using Point Cloud Data (점군집 데이터에 의한 3차원 객체도화의 자동화와 정확도)

  • Yoo, Eun-Jin;Yun, Seong-Goo;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Recent spatial information technology has brought innovative improvement in both efficiency and accuracy. Especially, airborne LiDAR system(ALS) is one of the practical sensors to obtain 3D spatial information. Constructing reliable 3D spatial data infrastructure is world wide issue and most of the significant tasks involved with modeling manmade objects. This study aims to create a test data set for developing automatic building modeling methods by simulating point cloud data. The data simulates various roof types including gable, pyramid, dome, and combined polyhedron shapes. In this study, a robust bottom-up method to segment surface patches was proposed for generating building models automatically by determining model key points of the objects. The results show that building roofs composed of the segmented patches could be modeled by appropriate mathematical functions and the model key points. Thus, 3D digitizing man made objects could be automated for digital mapping purpose.

DEM Extraction from LiDAR DSM of Urban Area (도시지역 LiDAR DSM으로부터 DEM추출기법 연구)

  • Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.19-25
    • /
    • 2005
  • Nowadays, it is possible to construct the DEMs of urban area effectively and economically by LiDAR system. But the data from LiDAR system has form of DSM which is included various objects as trees and buildings. So the preprocess is necessary to extract the DEMs from LiDAR DSMs for particular purpose as effects analysis of man-made objects for flood prediction. As this study is for extracting DEM from LiDAR DSM of urban area, we detected the edges of various objects using edge detecting algorithm of image process. And, we tried mean value filtering, median value filtering and minimum value filtering or detected edges instead of interpolation method which is used in the previous study and could be modified the source data. it could minimize the modification of source data, and the extracting process of DEMs from DSMs could be simplified and automated.

  • PDF

Extracting Roof Edges of Small Buildings from Digital Aerial Photographs (수치항공사진으로부터 소형건물의 지붕 경계 추출)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Kim, Sung-Hoon;Lee, Kyu-Dal
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.5
    • /
    • pp.425-435
    • /
    • 2014
  • The research for extracting man-made features such as building and road from the aerial photograph or satellite imagery has been performed actively. As lately the resolution of digital aerial photographs was improved, unwanted features(noise) would be often detected. An edge detection algorithm is developed to make up for such a noise problem, make boundaries of wanted objects clear and extract only needed features. The algorithm developed in this research performs separating RGB channels, differencing between channels, transforming in to binary images, excluding noises and restoring shapes, and edge extraction in order. The images to be used for edge detection are prepared through bundle adjustment, DTM extraction, orthorectification and mosaicking. The roof edges of small building on preprocessed digital aerial orthophotos were extracted using the algorithm developed in this study. The validity of the algorithms was proved by comparing edge results of small building extracted in this study with those of conventional methods.

3-Dimensional Building Reconstruction with Airborne LiDAR Data

  • Lee, Dong-Cheon;Yom, Jae-Hong;Kwon, Jay-Hyoun;We, Gwang-Jae
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.123-130
    • /
    • 2002
  • LiDAR (Light Detection And Ranging) system has a profound impact on geoinformatics. The laser mapping system is now recognized as being a viable system to produce the digital surface model rapidly and efficiently. Indeed the number of its applications and users has grown at a surprising rate in recent years. Interest is now focused on the reconstruction of buildings in urban areas from LiDAR data. Although with present technology objects can be extracted and reconstructed automatically using LiDAR data, the quality issue of the results is still major concern in terms of geometric accuracy. It would be enormously beneficial to the geoinformatics industry if geometrically accurate modeling of topographic surface including man-made objects could be produced automatically. The objectives of this study are to reconstruct buildings using airborne LiDAR data and to evaluate accuracy of the result. In these regards, firstly systematic errors involved with ALS (Airborne Laser Scanning) system are introduced. Secondly, the overall LiDAR data quality was estimated based on the ground check points, then classifying the laser points was performed. In this study, buildings were reconstructed from the classified as building laser point clouds. The most likely planar surfaces were estimated by the least-square method using the laser points classified as being planes. Intersecting lines of the planes were then computed and these were defined as the building boundaries. Finally, quality of the reconstructed building was evaluated.

  • PDF

A Study of Selecting Sequential Viewpoint and Examining the Effectiveness of Omni-directional Angle Image Information in Grasping the Characteristics of Landscape (경관 특성 파악에 있어서의 시퀀스적 시점장 선정과 전방위 화상정보의 유효성 검증에 관한 연구)

  • Kim, Heung Man;Lee, In Hee
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • Relating to grasping sequential landscape characteristics in consideration of the behavioral characteristics of the subject experiencing visual perception, this study was made on the subject of main walking line section for visitors of three treasures of Buddhist temples. Especially, as a method of obtaining data for grasping sequential visual perception landscape, the researcher employed [momentum sequential viewpoint setup] according to [the interval of pointers arbitrarily] and fisheye-lens-camera photography using the obtained omni-directional angle visual perception information. As a result, in terms of viewpoint selection, factors like approach road form, change in circulation axis, change in the ground surface level, appearance of objects, etc. were verified to make effect, and among these, approach road form and circulation axis change turned out to be the greatest influences. In addition, as a result of reviewing the effectiveness via the subjects, for the sake of qualitative evaluation of landscape components using the VR picture image obtained in the process of acquiring omni-directional angle visual perception information, a positive result over certain values was earned in terms of panoramic vision, scene reproduction, three-dimensional perspective, etc. This convinces us of the possibility to activate the qualitative evaluation of omni-directional angle picture information and the study of landscape through it henceforth.

A Study of Existential Space and Shape Design under the Influence of Natural Factors-with Special Reference to Korean Line Axis and Round- (자연적 요인으로서의 실존공간 및 형태 디자인에 관한 연구-한국의 선과 원축형을 중심으로-)

  • 오인완
    • Korean Institute of Interior Design Journal
    • /
    • no.6
    • /
    • pp.38-44
    • /
    • 1995
  • The purpose of this paper is to show that a shape pro-duced by natural factors such as weather, environments, etc., can be introduced into the emotion of a design, and to make a design process by planning a Korean image and characterizing its concept. Human beings, nature, man-made objects, and society have their own functions in an environmental structure. When all their functions are kept in working order, human beings come to discover orderliness out of which they can absorb pleasure. They cannot look into their own inside but they can trace back in their memories a variety of panoramic experiences which have been embed-ded onto their identity during their lifetime interactions with an empirical world. Children first acquire a way of cognition in the space, a comprehensive premise, connecting a specific place and an object of cognition. Such subconsciousness forms sky-lines of mountains, seas, and trees under the sky, and produces axis lines and beehived domes under the influ-ence of natural, cultural, and social factors, forming a folk culture. A subconscious composition of existential space is extended. A subconscious composition of existential space is extended to the areas of environmental design, product design, and fashion design. The development of a concept of place and space as a system is a necessary condition for discovering an existential foothold.

  • PDF

Extraction of water body in before and after images of flood using Mahalanobis distance-based spectral analysis

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.293-302
    • /
    • 2015
  • Water body extraction is significant for flood disaster monitoring using satellite imagery. Conventional methods have focused on finding an index, which highlights water body and suppresses non-water body such as vegetation or soil area. The Normalized Difference Water Index (NDWI) is typically used to extract water body from satellite images. The drawback of NDWI, however, is that some man-made objects in built-up areas have NDWI values similar to water body. The objective of this paper is to propose a new method that could extract correctly water body with built-up areas in before and after images of flood. We first create a two-element feature vector consisting of NDWI and a Near InfRared band (NIR) and then select a training site on water body area. After computing the mean vector and the covariance matrix of the training site, we classify each pixel into water body based on Mahalanobis distance. We also register before and after images of flood using outlier removal and triangulation-based local transformation. We finally create a change map by combining the before-flooding water body and after-flooding water body. The experimental results show that the overall accuracy and Kappa coefficient of the proposed method were 97.25% and 94.14%, respectively, while those of the NDWI method were 89.5% and 69.6%, respectively.