• 제목/요약/키워드: man-machine interaction

검색결과 38건 처리시간 0.029초

Tactile Sensation Display with Electrotactile Interface

  • Yarimaga, Oktay;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.145-150
    • /
    • 2005
  • This paper presents an Electrotactile Display System (ETCS). One of the most important human sensory systems for human computer interaction is the sense of touch, which can be displayed to human through tactile output devices. To realize the sense of touch, electrotactile display produces controlled, localized touch sensation on the skin by passing small electric current. In electrotactile stimulation, the mechanoreceptors in the skin may be stimulated individually in order to display the sense of vibration, touch, itch, tingle, pressure etc. on the finger, palm, arm or any suitable location of the body by using appropriate electrodes and waveforms. We developed an ETCS and investigated effectiveness of the proposed system in terms of the perception of roughness of a surface by stimulating the palmar side of hand with different waveforms and the perception of direction and location information through forearm. Positive and negative pulse trains were tested with different current intensities and electrode switching times on the forearm or finger of the user with an electrode-embedded armband in order to investigate how subjects recognize displayed patterns and directions of stimulation.

  • PDF

휴먼/로봇 인터페이스 연구동향 분석 (Trends on Human/Robot Interface Research)

  • 임창주;임치환
    • 대한인간공학회지
    • /
    • 제21권2호
    • /
    • pp.101-111
    • /
    • 2002
  • An intelligent robot, which has been developed recently, is no more a conventional robot widely known as an industrial robot. It is a computer system embedded in a machine and utilizes the machine as a medium not only for the communication between the human and the computer but also for the physical interaction among the human, the computer and their environment. Recent advances in computer technology have made it possible to create several of new types of human-computer interaction which are realized by utilizing intelligent machines. There is a continuing need for better understanding of how to design human/robot interface(HRI) to make for a more natural and efficient flow of information and feedback between robot systems and their users in both directions. In this paper, we explain the concept and the scope of HRI and review the current research trends of domestic and foreign HRL. The recommended research directions in the near future are also discussed based upon a comparative study of domestic and foreign HRI technology.

A Quantitative Model of System-Man Interaction Based on Discrete Function Theory

  • Kim, Man-Cheol;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.430-449
    • /
    • 2004
  • A quantitative model for a control system that integrates human operators, systems, and their interactions is developed based on discrete functions. After identifying the major entities and the key factors that are important to each entity in the control system, a quantitative analysis to estimate the recovery failure probability from an abnormal state is performed. A numerical analysis based on assumed values of related variables shows that this model produces reasonable results. The concept of 'relative sensitivity' is introduced to identify the major factors affecting the reliability of the control system. The analysis shows that the hardware factor and the design factor of the instrumentation system have the highest relative sensitivities in this model. T도 probability of human operators performing incorrect actions, along with factors related to human operators, are also found to have high relative sensitivities. This model is applied to an analysis of the TMI-2 nuclear power plant accident and systematically explains how the accident took place.

A Study on Developmental Direction of Interface Design for Gesture Recognition Technology

  • Lee, Dong-Min;Lee, Jeong-Ju
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.499-505
    • /
    • 2012
  • Objective: Research on the transformation of interaction between mobile machines and users through analysis on current gesture interface technology development trend. Background: For smooth interaction between machines and users, interface technology has evolved from "command line" to "mouse", and now "touch" and "gesture recognition" have been researched and being used. In the future, the technology is destined to evolve into "multi-modal", the fusion of the visual and auditory senses and "3D multi-modal", where three dimensional virtual world and brain waves are being used. Method: Within the development of computer interface, which follows the evolution of mobile machines, actively researching gesture interface and related technologies' trend and development will be studied comprehensively. Through investigation based on gesture based information gathering techniques, they will be separated in four categories: sensor, touch, visual, and multi-modal gesture interfaces. Each category will be researched through technology trend and existing actual examples. Through this methods, the transformation of mobile machine and human interaction will be studied. Conclusion: Gesture based interface technology realizes intelligent communication skill on interaction relation ship between existing static machines and users. Thus, this technology is important element technology that will transform the interaction between a man and a machine more dynamic. Application: The result of this study may help to develop gesture interface design currently in use.

물리적 인간 기계 상호작용을 위한 근육의 기하학적 형상 변화를 이용한 상지부 움직임 예측 (Prediction of the Upper Limb Motion Based on a Geometrical Muscle Changes for Physical Human Machine Interaction)

  • 한효녕;김정
    • 제어로봇시스템학회논문지
    • /
    • 제16권10호
    • /
    • pp.927-932
    • /
    • 2010
  • Estimation methods of motion intention from bio-signal present challenges in man machine interaction(MMI) to offer user's command to machine without control of any devices. Measurements of meaningful bio-signals that contain the motion intention and motion estimation methods from bio-signal are important issues for accurate and safe interaction. This paper proposes a novel motion estimation sensor based on a geometrical muscle changes, and a motion estimation method using the sensor. For estimation of the motion, we measure the circumference change of the muscle which is proportional to muscle activation level using a flexible piezoelectric cable (pMAS, piezo muscle activation sensor), designed in band type. The pMAS measures variations of the cable band that originate from circumference changes of muscle bundles. Moreover, we estimate the elbow motion by applying the sensor to upper limb with least square method. The proposed sensor and prediction method are simple to use so that they can be used to motion prediction device and methods in rehabilitation and sports fields.

공작기계의 정밀도 향상을 위한 전산 메카트로닉스 해석 (Computational Mechatronics Analysis to Design High Precision N.C. Machine)

  • 김동현;김동만;박강균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.205-209
    • /
    • 2008
  • In this study, very accurate computational mechatronics method has been developed for typical N.C. machine model applying to manufacturing industry in these days. Computation analysis of high speed machine tools like N.C. machine needs consideration about mechatronical features because the machine shows close interaction between dynamic behavior of the mechanical structure, drives and numerical control. For this, nonlinear structural analysis tools based on FEM are linked numerical control program to control the dynamic behavior. In this study, we studied the dynamic feature of N.C. machine by using SAMCEF as nonlinear computational structural analysis tool and simulink as drivers.

  • PDF

원자력발전소에서의 인간공학적 실험평가를 위한 종합 실험설비 개발 (Development of integrated test facility for human factors experiments in nuclear power plant)

  • 오인석;이현철;천세우;박근옥;심봉식
    • 대한인간공학회지
    • /
    • 제16권1호
    • /
    • pp.107-117
    • /
    • 1997
  • It is necessary to evaluate HMI inaspects of human factors in the design stage of MMIS(man machine interface system) and feedback the result of evaluation because operators performance is mainly influenced by the HMI. Therefore, the MMIS design should be reflected the operators psychological, behavioral and physiological characteristics in the interaction with human machine interface(HMI) in order to improve the safety and availability of the MMIS of a nuclear power plant(NPP) by reduction of human error. The development of human factors experimental evaluation techniques and integrated test facility(ITF) for the human factors evaluation become an important research field to resolve hi,am factors issues on the design of an advanced control room(ACR). We developed am ITF, which is aimed to experiment with the design of the ACR and the human machine interaction as it relates to the control of NPP. This paper presents the development of an ITF that consists of three rooms such as main test room(MTR), supporting test room(STR) and experiment control room(ECR). And, the ITF has a various facilities such as a human machine simulator(HMS), experimental measurement systems and data analysis and experiment evaluation supporting system(DAEXESS). The HMS consists of full-scope simulation model of Korean standard NPP and advanced HMI based on visual display nits (VDUS) such as touch color CRT, large scale display panel(LSDP), flat panel display unit and so on.

  • PDF

불구속 동력전달 세탁기의 성능 평가 (Performance Evaluation of a Washing Machine of Unconstrained Transmission)

  • 김영만;최우천
    • 한국정밀공학회지
    • /
    • 제31권4호
    • /
    • pp.343-351
    • /
    • 2014
  • Washing machines designed to clean laundry have been more widely used at home as they reduce household labor and boost the quality of life. Technological advances and better standards of life increase demand for laundry washing performance. Energy efficiency regulations and consumer demand for the larger trend, washing machine makers should be done in performance studies to reduce power, and water consumption and the load on power transmission devices. In this study, performance of a fully automatic washing machine with unconstrained transmission is analyzed through experiment and CFD simulation. It is found that the interaction between laundry and transmission change the washing behavior and affect washing performance with regard to the degree of freedom. The results obtained in this study can be used in developing new washing machine transmissions and make them more robust.

컬러 시각을 이용한 사람 손의 검출 (Human Hand Detection Using Color Vision)

  • 김준엽;도용태
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.28-33
    • /
    • 2012
  • The visual sensing of human hands plays an important part in many man-machine interaction/interface systems. Most existing visionbased hand detection techniques depend on the color cues of human skin. The RGB color image from a vision sensor is often transformed to another color space as a preprocessing of hand detection because the color space transformation is assumed to increase the detection accuracy. However, the actual effect of color space transformation has not been well investigated in literature. This paper discusses a comparative evaluation of the pixel classification performance of hand skin detection in four widely used color spaces; RGB, YIQ, HSV, and normalized rgb. The experimental results indicate that using the normalized red-green color values is the most reliable under different backgrounds, lighting conditions, individuals, and hand postures. The nonlinear classification of pixel colors by the use of a multilayer neural network is also proposed to improve the detection accuracy.