• Title/Summary/Keyword: malonyl ginsenoside Re

Search Result 4, Processing Time 0.016 seconds

Complete 1H-NMR and 13C-NMR spectral assignment of five malonyl ginsenosides from the fresh flower buds of Panax ginseng

  • Wang, Yu-Shuai;Jin, Yin-Ping;Gao, Wei;Xiao, Sheng-Yuan;Zhang, Yu-Wei;Zheng, Pei-He;Wang, Jia;Liu, Jun-Xia;Sun, Cheng-He;Wang, Ying-Ping
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.245-250
    • /
    • 2016
  • Background: Ginsenosides are the major effective ingredients responsible for the pharmacological effects of ginseng. Malonyl ginsenosides are natural ginsenosides that contain a malonyl group attached to a glucose unit of the corresponding neutral ginsenosides. Methods: Medium-pressure liquid chromatography and semipreparative high-performance liquid chromatography were used to isolate purified compounds and their structures determined by extensive one-dimensional- and two-dimensional nuclear magnetic resonance (NMR) experiments. Results: A new saponin, namely malonyl-ginsenoside Re, was isolated from the fresh flower buds of Panax ginseng, along with malonyl-ginsenosides Rb1, Rb2, Rc, Rd. Some assignments for previously published $^1H$- and $^{13}C$-NMR spectra were found to be inaccurate. Conclusion: This study reports the complete NMR assignment of malonyl-ginsenoside Re, $Rb_1$, $Rb_2$, Rc, and Rd for the first time.

Thermal Conversion Pathways of Ginsenosides in Red Ginseng Processing

  • Lee, Sang Myung
    • Natural Product Sciences
    • /
    • v.20 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • According to the results of my study on the chromatographic analysis of fresh ginseng (Panax ginseng C. A. Meyer) roots, most of the contents of protopanxadiol ginsenosides $Rb_1$, Rc, $Rb_2$, and Rd are derived from the corresponding malonyl ginsenosides in fresh ginseng by a heat process. Also, I confirmed that acetyl ginsenosides are naturally occurring constituents in fresh ginseng, not decarboxylates from malonyl ginsenosides. Seven neutral ginsenosides $Rg_1$, Re, Rf, Rc, $Rb_1$, $Rb_2$, and Rd were transformed to specific conversions in red ginseng preparation conditions. The conversion paths progress by three rules concluded from my study. These conversion rules are I: the ether bond is stable at positions 3 and 6 in the dammarane skeleton, II: the ether bond between sugars is stable in glycosides, and III: the ether bond to glycosides is unstable at position 20 in the dammarane skeleton.

The Difference of Ginsenoside Compositions According to the Conditions of Extraction and Fractionation of Crude Ginseng Saponins (추출 및 분획조건에 따른 인삼 조사포닌 중 ginsenoside 조성 차이)

  • Shin, Ji-Young;Choi, Eon-Ho;Wee, Jae-Joon
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.282-287
    • /
    • 2001
  • This study was carried out to investigate the difference of ginsenoside compositions in crude ginseng saponins prepared by five different methods including three new methods. Two known methods are hot methanol(MeOH) extraction/n-butanol(n-BuOH) fractionation and hot MeOH extraction/Diaion HP-20 adsorption/MeOH elution. Three new methods are hot MeOH extraction/cation AG 50W $absorption/H_2O$ elution/n-BuOH extraction, cool MeOH extraction/Diaion HP-20 adsorption/MeOH elution and direct extraction with ethyl acetate(EtOAc)/n-BuOH. Analysis of ginsenoside composition in the crude saponins by conventional HPLC/RI(Refractive Index) did not show great difference between methods except EtOAc/n-BuOH method. However, HPLC/ELSD (evaporative light scattering detector) employing gradient mobile phase afforded fine resolution of ginsenoside Rf, $Rg_1$ and $Rh_1$, and great difference of ginsenoside compositions between methods. LC/MS revealed that large amount of prosapogenins were produced during the pass through the cation exchange (AG 50W) column being strongly acidic. Six major ginsenosides such as $Rb_1,w;Rb_2,$ Rc, Rd, Re and $Rg_1$, 5 prosapogenins and one chikusetsusaponin were identified by LC/MS. A newly established HPLC method employing ODS column and gradient mobile phase of $KH_2PO_4/CH_3CN$ revealed that malonyl ginsenosides were detected only in the crude saponin obtained from cool MeOH extraction.

  • PDF

Remarkable impact of steam temperature on ginsenosides transformation from fresh ginseng to red ginseng

  • Xu, Xin-Fang;Gao, Yan;Xu, Shu-Ya;Liu, Huan;Xue, Xue;Zhang, Ying;Zhang, Hui;Liu, Meng-Nan;Xiong, Hui;Lin, Rui-Chao;Li, Xiang-Ri
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.277-287
    • /
    • 2018
  • Background: Temperature is an essential condition in red ginseng processing. The pharmacological activities of red ginseng under different steam temperatures are significantly different. Methods: In this study, an ultrahigh-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry was developed to distinguish the red ginseng products that were steamed at high and low temperatures. Multivariate statistical analyses such as principal component analysis and supervised orthogonal partial least squared discrimination analysis were used to determine the influential components of the different samples. Results: The results showed that different steamed red ginseng samples can be identified, and the characteristic components were 20-gluco-ginsenoside Rf, ginsenoside Re, ginsenoside Rg1, and malonyl-ginsenoside Rb1 in red ginseng steamed at low temperature. Meanwhile, the characteristic components in red ginseng steamed at high temperature were 20R-ginsenoside Rs3 and ginsenoside Rs4. Polar ginsenosides were abundant in red ginseng steamed at low temperature, whereas higher levels of less polar ginsenosides were detected in red ginseng steamed at high temperature. Conclusion: This study makes the first time that differences between red ginseng steamed under different temperatures and their ginsenosides transformation have been observed systematically at the chemistry level. The results suggested that the identified chemical markers can be used to illustrate the transformation of ginsenosides in red ginseng processing.