• 제목/요약/키워드: malondialdehyde(MDA)

검색결과 671건 처리시간 0.026초

Placental Superoxide Dismutase, Genetic Polymorphism, and Neonatal Birth Weight

  • Hong, Yun-Chul;Lee, Kwan-Hee;Im, Moon-Hwan;Kim, Young-Ju;Ha, Eun-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • 제37권4호
    • /
    • pp.306-311
    • /
    • 2004
  • Background : The roles of antioxidants in the placenta and genetic susceptibility to oxidant chemicals in relation to neonatal birth weight have not been elucidated. We determined whether the level of placental manganese superoxide dismutase (MnSOD) and its genetic polymorphism plays any role in oxidative stress and neonatal birth weight. Methods : We measured placental MnSOD and determined MnSOD genetic polymorphism among 108 pregnant women who were hospitalized for delivery and their singleton live births in Korea. Main outcome measurements are maternal urinary malondialdehyde (MDA) and birth weight. Results : Maternal urinary concentrations of MDA were significantly associated with neonatal birth weight (P=0.04). The enzyme level of placental MnSOD was also significantly associated with MDA concentration (P=0.04) and neonatal birth weight (p<0.01). We observed dose-response relationships between placental MnSOD and maternal urinary MDA, and neonatal birth weight after adjusting for maternal weight, height, age, and neonatal sex. After controlling for covariates, MnSOD variant genotype increased maternal urinary MDA concentrations (p<0.01) and reduced birth weight by 149 gm (P=0.08). Conclusions : This study demonstrates that the placental level of MnSOD during pregnancy significantly affects fetal growth by reducing oxidative stress, and that genetic polymorphism of MnSOD probably modulate the effects of oxidants on fetal growth.

40주령의 생쥐 간에 미치는 ginsenoside의 항산화효과 (Effects of the Antioxidative Components to Ginsenoside in the Liver of 40-week-old Mice)

  • 김경현;성금수;장재철
    • Journal of Ginseng Research
    • /
    • 제24권4호
    • /
    • pp.162-167
    • /
    • 2000
  • 40주령의 생쥐에게 홍삼 총사포닌, PD, PT ginsenoside G-Rd, 5-Re 및 C-K 등을 경구투여하여 생쥐 간에 미치는 항산화효과를 알아보기 위하여 SOD와 CAT활성도 변화와 과산화수소 함량, MDA수준의 변화를 조사하였다. SOD와CAT 활성도는 모든 홍삼 사포닌 투여군에서 증가하였지만 PD투여군에서만 유의성(p<0.01) 있는 증가를 보였다. 과산화수소 함량은 홍삼 사포닌의 투여로 모두 감소하였으며, 특히 PD, PT G-Rd(p<0.01) 및 G-Re 투여군(p<0.05)에서 유의성 있게 감소하였다. CAT 활성도는 G-Rd 투여군에서 유의성(p<0.05) 있게 증가하였다. 지질과산화의 최종산물인MDA수준은 홍삼 투여군 모두에서 감소되었으며, 특히 G-Rd투여군에서 유의성(p<0.05) 있게 감소하였다. 따라서 홍삼 사포닌 성분은 40주령의 생쥐 간에서 항산화효소의 합성증가를 유도하거나 활성을 촉매하여 활성산소들을 효율적으로 소거하는 기능과 지질과산화를 억제하는 항산화물질의 합성능력을 강화하여 산화적 손상으로부터 생체를 방어하는 효과가 있다고 생각되었다. 특히 홍삼 사포닌 중에서도 PD와G-Rd투여군은 항산화 효소활성을 증가시키는 반면 지질과산화를 .억제하였다.

  • PDF

나이에 따른 흰쥐의 혈액, 간, 뇌조직의 철분함량, 산화 스트레스 지표에 대한 비타민 C 와 비타민 E공급의 역할 (The Role of Vitamin C and Vitamin E Supplementation on Iron Contents and Biomarkers of Oxidative Stress in Blood, Liver and Brain of Aging Rats)

  • 황은희
    • Journal of Nutrition and Health
    • /
    • 제33권5호
    • /
    • pp.507-516
    • /
    • 2000
  • The purpose of this study was to investigate the effect of vitamin C and vitamin E supplementation on the iron contents and oxidative stress of the rats. Rats were fed 18g ascorbic acid and 300IU $\alpha$-tocopherol/kg diet, respectively. Rats were sacrificed at 1, 3, 5 and 7 month of age. The blood, liver and brain were selected for the quantitation of iron and malondialdehyde(MDA) contents, glutathione peroxidase(GSHPx), superoxided dismutase(SOD) and catalase(CAT) activity. Iron and MDA contents and GSHPx activities were increased with aging. Vitamin C and Vitamin E supplementation increased iron contents of the plasma. Vitamin C raised iron contents, but vitamin E decreased iron contents of the liver. In the brain vitamin C and vitamin E did not affect the iron level. MDA levels were decreased with vitamin C and vitamin E supplementation in the erythrocyte and liver, and vitamin C supplementation elevated MDA levels in the brain. GSHPx activity was increased with vitamin C and vitamin E supplementation. SOD activities of erythroucyte and brain were not affected with age, but in the liver, SOD activity was raised with age and vitamin C supplementation. Vitamin C and vitamin E supplementation promoted CAT activity of erythroucyte and liver, and CAT activity of brain was eleveated with vitamin addition but was decreaed with vitamin E addition. Vitamin C and vitamin E decreased iron contents of blood plasma, MDA contents of plasma and liver, and CAT activity of erythrocyte. Above results indicated that iron contents and biomarkers of oxidative stress were more affected by age than antioxidant action of vitamin C and vitamin E.

  • PDF

배수성이 다른 자생 버뮤다그래스의 휴면 전후 항산화 효소활성 및 세포막 안정성 변화 (Antioxidant Enzyme Activity and Cell Membrane Stability of Korean Bermudagrass Genotypes Different in Ploidy at Dormant Stage)

  • 이긍주;이혜정;마기윤;전영주;김인경
    • 아시안잔디학회지
    • /
    • 제25권1호
    • /
    • pp.17-21
    • /
    • 2011
  • 기존 보고된 바에 의하면 한국 자생 버뮤다그래스는 군집 내에서 형태학, 생육 특성, 세포학적 특성에 대해 유전적으로 매우 다양한 변이를 보여주었다. 버뮤다그래스의 염색체 수와 핵 DNA 량에 따르면 배수성 수준의 범위가, 3배 체(2n=3x), 4배체(2n=4x), 5배체(2n=5x), 6배체(2n=6x)로 나타났었다. 본 연구에서는 한국에서 휴면이 유도되는저온과 짧은 일장에 대한 항산화효소(superoxide dismutase, catalase, peroxidase, ascorbate peroxidase)의 다양한 반응과 각 버뮤다그래스 세포형의 세포막 안정성을 조사하였다. 모든 항산화효소는 휴면 기간동안 높게 나타났으나, 과산화수소를 물과 산소 분자로 변환시키는 헴기를 함유한 카탈라제는 6배체 버뮤다그래스를 제외한 세 개의 세포형에서 휴면이 개시되기 전에 활성화되었다. 상대적으로 세엽이며 생육속도가 빠른3배체와 4배체는 superoxide dismutase와 peroxidase 효소의 활성이 증가됨을 확인하였다. 수산기를 가진 라디칼에 의해 손상을 받은 세포막에서 지질과산화의 산물인 말론디알데히드(MDA)는 온도가 감소함에 따라 모든 세포형에서 증가되었고, 방어적인 항산화효소를 더 갖고 있는 3배체와 4배체는 MDA 생산이 현저하게 더 낮게 나타났다. 전해질 유출은 5배체와 6배체에서 더 높았던 것과 유사하게, 저온이 적용될 때 외견상으로 세포막에 더 손상을 받는 것 같았다. 실험 결과, 서로 다른 세포형(cytotype)의 항산화 반응은 유전적으로 특이적이며, 이는 버뮤다그래스에서 저온 저항성과의 연관성을 분자 수준에서 더 연구하는 것이 필요하다.

The Effects of Propolis on Biochemical Parameters and Activity of Antioxidant Enzymes in Broilers Exposed to Lead-Induced Oxidative Stress

  • Seven, Ismail;Aksu, Taylan;Seven, Pinar Tatli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권11호
    • /
    • pp.1482-1489
    • /
    • 2010
  • This study aimed to determine the effects of vitamin C and propolis-supplemented feeds on some blood parameters, lipid peroxidation, and activities of some antioxidant enzymes in broilers exposed to oxidative stress. 360 three-day-old broiler chicks (Ross 308) were randomly divided into four treatment groups each containing 90 animals, including six replicate groups for each treatment. The experimental groups were designated for a 3-42 days period as follows: no supplement to basal ration (Control-Group I); supplement of 500 ppm vitamin C and 200 ppm lead (as lead acetate) to basal ration (Group II); supplement of 1 g/kg propolis and 200 ppm lead (as lead acetate) to basal ration (Group III); and supplement of 200 ppm lead (as lead acetate) to basal ration (Group IV). The highest TG level (86.83 mg/dl) was observed in the lead supplemented group; however, the lowest aspartate aminotransferase (SGOT) level (90.71 IU/L) was observed in the control group (p<0.05). The addition of lead increased the plasma malondialdehyde (MDA) level (p<0.01) compared to other treatments. However, the addition of vitamin C and propolis decreased the plasma MDA level close to control levels. The highest erythrocyte superoxide dismutase (SOD) activity was observed in the lead addition group (p<0.01) while no significant differences were observed for SOD activities of the control, vitamin C +lead, and propolis+lead groups. The plasma reduced glutathione (GSH) activity of the control ($2.30{\mu}mol$/ml) was significantly lower than the lead administered group ($6.20{\mu}mol$/ml) (p<0.01); while this parameter was determined to be similar to other groups. No significant differences were observed between groups for liver GSH activity, but heart GSH activity of the control was significantly higher in comparison to other treatments (p<0.05). To obtain similar antioxidant effects, it is recommend that using propolis (1 g/kg) and vitamin C (500 mg/kg) supplementation in broiler diets may overcome the adverse effects of oxidative stress originating from dietary lead.

Effects of grape pomace on the antioxidant defense system in diet-induced hypercholesterolemic rabbits

  • Choi, Chang-Sook;Chung, Hae-Kyung;Choi, Mi-Kyung;Kang, Myung-Hwa
    • Nutrition Research and Practice
    • /
    • 제4권2호
    • /
    • pp.114-120
    • /
    • 2010
  • The effects of grape seeds extract and grape peels extract prepared from grape pomace on the activity of antioxidant enzymes, degree of lipid peroxidation in serum and liver tissue were investigated in rabbits fed on high cholesterol diet. New Zealand white rabbits were divided as follows ; 1) NOR (normal group); 2) CHOL (cholesterol group); 3) GSH (cholesterol + grape seed extract group); 4) GPE (cholesterol + grape peel extract); 5) GSP (cholesterol + grape seed powder); 6) GPP (cholesterol + grape peel powder); 7) GE (cholesterol + grape seed and peel extract); 8) GP (cholesterol + grape seed and peel powder). Eight groups of rabbits were studied for 8 weeks. At the end of the experimental period, rabbits were sacrificed and the liver tissue were removed. Then, GSH, GPx, GST, CAT and MDA in the liver were measured. In liver tissues, total glutathione contents (GSH), glutathione peroxidase (GPx) and catalase (CAT) activity, which was significantly higher by grape seed extract supplementation. The level of malondialdehyde (MDA) was lower in the serum of rabbits fed grape seed extract or grape peel powder plus cholesterol than in the serum of rabbits fed cholesterol alone. It is therefore likely that grape seed extract prepared from grape pomace functioned as antioxidants in vivo, negating the effects of the oxidative stress induced by 1% cholesterol diet. The grape seed extract was found effective in converting the oxidized glutathione into reduced glutathione, and in removing $H_2O_2$ that is created by oxidative stress. The grape peel powder was found to have small influence on reduced glutathione content, CAT and GPX activity, but it increased GST activity in liver tissues, resulting in promoting the combination of lipid peroxide and glutathione (GSH), and further, lowering the formation of lipid peroxide in the serum. Therefore, grape pomace (grape seed extract and grape peel powder) supplementation is considered to activate the antioxidant enzyme system and prevent damage with hypercholesterolemia.

PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 지실의 세포보호효과 연구 (Protective Effect of Aurantii Immaturus Fructus on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil)

  • 김완식;정승현;신길조;문일수;이원철
    • 대한한의학회지
    • /
    • 제24권1호
    • /
    • pp.29-40
    • /
    • 2003
  • Object : This research was performed to investigate the protective effect of Aurantii Immaturus Fructus against ischemic damage using PC12 cells and global ischemia in gerbils. Methods : To observe the protective effect of Aurantii Immaturus Fructus on ischemia damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Aurantii Immaturus Fructus during ischemic insult. Gerbils were divided into three groups : a normal group, a 5-min two-vessel occlusion (2VO) group, and an Aurantii Immaturus Fructus administered after 2VO group. The CCAs were occluded by microclip for 5 minutes. Aurantii Immaturus Fructus was administered orally for 7 days after 2VO. The histological analysis was performed at 7 days after the surgery. For histological analysis, the brain tissue was stained with 1% cresyl violet solution. Results : The results showed that 1. Aurantii Immaturus Fructus had a protective effect against ischemia in the CAI area of the gerbil hippocampus 7 days after 5-minute occlusion, 2. In the hypoxia/reperfusion model using PC12 cells, the Aurantii Immaturus Fructus had a protective effect against ischemia in the dose of $0.2{\;}\mu\textrm{g}/ml,{\;}2{\;}\mu\textrm{g}/ml{\;}and{\;}20{\;}\mu\textrm{g}/ml$ 3. Aurantii Immaturus Fructus increased the activities of glutathione peroxidase and catalase, 4. The activity of superoxide dismutase (SOD) was increased by ischemic damage, which might represent self protection. This study suggests that Aurantii Immaturus Fructus has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils, and it also has protective effects on a hypoxia/reperfusion cell culture model using PCq2 cells. Conclusions : Aurantii Immaturus Fructus has protective effects against ischemic brain damage at the early stage of ischemia.

  • PDF

PC12 손상 세포 및 전뇌허혈 유발 Gerbil에 대한 백지의 세포보호효과 (Protective Effect of Angelicae Dahuri Radix on Hypoxia Reperfusion Induced by PC12 Cell Damage and Global Ischemia in Gerbil)

  • 이영효;정승현;신길조;문일수;이원철
    • 대한한의학회지
    • /
    • 제24권1호
    • /
    • pp.110-121
    • /
    • 2003
  • Objective : This research was performed to investigate the protective effect of Angelicae Dahuri Radix against ischemic damage using PC12 cells and global ischemia in gerbils. Methods : To observe the protective effect of Angelicae Dahuri Radix on ischemia damage, viability and changes in activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase and production of malondialdehyde (MDA) were observed after treating PC12 cells with Angelicae Dahuri Radix during ischemic insult. Gerbils were divided into three groups : a normal group, a 5-min two-vessel occlusion (2VO) group, and an Angelicae Dahuri Radix administered after 2VO group. The CCAs were occluded by microclip for 5 minutes. Angelicae Dahuri Radix was administered orally for 7 days after 2VO. The histological analysis was performed at 7 days after surgery. For histological analysis, the brain tissue was stained with 1% cresyl violet solution. Results : 1. Angelicae Dahuri Radix has a protective effect against ischemia in the CA1 area of the gerbil hippocampus 7 days after 5-minute occlusion, 2. In the hypoxia/reperfusion model using PC12 cells, Angelicae Dahuri Radix has a protective effect against ischemia in the dose of $0.2\mu\textrm{g}/ml$, $2\mu\textrm{g}/ml$ and $20\mu\textrm{g}/ml$, 3. Angelicae Dahuri Radix increased the activities of glutathione peroxidase and catalase. 4. The activity of superoxide dismutase (SOD) was increased by ischemic damage, which might represent self protection. This study suggests that Angelicae Dahuri Radix has some neuroprotective effect against neuronal damage following cerebral ischemia in vivo with a widely used experimental model of cerebral ischemia in Mongolian gerbils, and it also has protective effects on a hypoxia/reperfusion cell culture model using PC12 cells. Conclusions : Angelicae Dahuri Radix has protective effects against ischemic brain damage at the early stage of ischemia.

  • PDF

Oxidative Stress Is Decreased in Off-pump Versus On-pump Coronary Artery Surgery

  • Gonenc, Aymelek;Haclsevki, Aysun;Bakkaloglu, Beyhan;Soyaglr, Aylin;Torun, Meral;Karagoz, Haldun;Simsek, Bolkan
    • BMB Reports
    • /
    • 제39권4호
    • /
    • pp.377-382
    • /
    • 2006
  • Oxidative stress occurs in patients undergoing coronary artery bypass operation. The aim of this study was to investigate the difference in oxidative stress in off-pump versus on-pump coronary artery bypass surgery. In the present study, in serial blood samples, plasma malondialdehyde (MDA) as index of lipid peroxidation, red blood cells glutathione peroxidase (GPx) and superoxide dismutase (SOD) were measured to compare the extent of oxidative stress in 30 patients undergoing OPCAB (off-pump coronary artery bypass grafting), 12 patients undergoing CABG (on-pump coronary artery bypass grafting) and 18 healthy controls. In CABG group, MDA levels increased significantly from $2.87{\pm}0.62\;nmol/mL$ before anesthesia and $2.87{\pm}0.65\;nmol/mL$ after anesthesia to $3.05{\pm}0.66\;nmol/mL$ after ischemia (p < 0.05). Similarly, SOD levels also elevated significantly from $661.58{\pm}78.70\;U/g$ Hb before anesthesia and $659.42{\pm}81.21\;U/g$ Hb anesthesia induction to $678.08{\pm}75.80\;U/g$ Hb after ischemia (p < 0.01, p < 0.01, respectively). In OPCAB group, only SOD levels increased from $581.73{\pm}86.24\;U/g$ Hb anesthesia induction to $590.90{\pm}88.90\;U/g$ Hb after reperfusion (p < 0.05). Glutathione peroxidase levels were not changed according to blood collection times in both of CABG group or OPCAB group (p > 0.05). Our results show that only mild signs of oxidative stress is found after reperfusion in OPCAB operation compared with CABG operation. Further studies are needed in order to confirm this hypothesis.

택사 Butanol 분획물과 Selenium 보충이 당뇨 흰쥐의 글리코겐 함량, 지질대사 및 지질과산화에 미치는 영향 (The Effects of Alisma canaliculatum Butanol Fraction with Selenium on Glycogen Level, Lipid Metabolism and Lipid Peroxidation in Streptozotocin-Induced Diabetic Rats)

  • 최성숙
    • Journal of Nutrition and Health
    • /
    • 제37권1호
    • /
    • pp.15-22
    • /
    • 2004
  • The purpose of this study was to investigate the effect of butanol (BuOH) fraction of Alisma canaliculatum (Ac) and/or selenium (Se) treatment on glycogen level, lipid metabolism and lipid peroxidation in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were assigned to one of the five groups: normal, STZ-control, and three experimental groups (Ac group, Ac-Se group, and Se group). Diabetes was experimentally induced by intravenous administration of 45 mg/kg of STZ in citrate buffer. The BuOH fraction of Ac (400 mg/kg bw) was orally administered for 3 weeks. The Se group were fed a AIN-93 recommended diet mixed with Na$_2$SeO$_3$ (2 mg/kg diet). The liver glycogen level of Ac and Ac-Se groups were significantly higher, when compared with the STZ-control groups. The muscle glycogen level was not significantly differ among all groups. The levels of liver triglyceride were higher in Ac-Se group than the STZ-control group. Pancreas protein levels were significantly increased in Ac-Se group than STZ-control group. The concentration of liver malondialdehyde (MDA) was significantly decreased in Ac and Se groups and decreased in Ac-Se group. Administration of BuOH fraction of Alisma canaliculatum and selenium supplementation increased the liver glycogen and triglyceride levels, and reduced peroxidative liver damage in STZ induced diabetic rats. These results suggest that treatment with a BuOH fraction of Alisma canaliculatum in combination with selenium has no synergistic antioxidative effect. Selenium supplementation may lead a decrease MDA of liver in diabetic rats.