• Title/Summary/Keyword: malodors

Search Result 14, Processing Time 0.019 seconds

Comparison of Liquid Composting Efficiency using Liquid Pig Manure in Different Condition (가축분뇨 슬러리 액비 부숙 조건별 특성비교)

  • Jung, Kwang-Yong;Cho, Nam-Jun;Jeong, Yee-Geun
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.301-305
    • /
    • 1998
  • This study was conducted to evaluate the liquid composting efficiency using pig manure in different condition such as simple storage type reactor, continuous aeration reactor, anaerobic reactor and anaerobic agitation reactor. Continuous aeration reactor was the most efficiency method to BOD and malodors removal than other methods. While nitrogen loss in continuous aeration reactor was 47% of initial concentration, which was the higher amount than any other digestion methods. The digestion efficiency between anaerobic reactor and anaerobic agitation reactor were similar, but E. coli and malodor removal efficiency were a little higher in the anaerobic agitation reactor. Simple storage type reactor which was conventional digestion method in rural area gave lower efficiency than aerobic and anaerobic digestion methods in view of BOD, E. coli and malodor removal. The liquid composting efficiency which were evaluated by various indicators like pH, BOD, E, coli, malodor and nitrogen loss was high in the order of anaerobic agitation reactor>continuous aeration reactor>anaerobic reactor>simple storage type reactor.

  • PDF

A Test of Relative Removal Properties of Various Offensive Odors by Zeolite

  • Adelodun, Adedeji A.;Vellingiri, Kowsalya;Jeon, Byong-Hun;Oh, Jong-Min;Kumar, Sandeep;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.15-28
    • /
    • 2017
  • The adsorptive removal properties of synthetic A4 zeolite were investigated against a total of 16 offensive odors consisting of reduced sulfur compounds (RSCs), nitrogenous compounds (NCs), volatile fatty acids (VFAs), and phenols/indoles (PnI). Removal of these odors was measured using a laboratory-scale impinger-based adsorption setup containing 25 g of the zeolite bed (flow rate of $100mL\;min^{-1}$). The high est and lowest breakthrough (%) values were shown for PnIs and RSCs, respectively, and the maximum and minimum adsorption capacity (${\mu}g\;g^{-1}$) of the zeolite was observed for the RSCs (range of 0.77-3.4) and PnIs (0.06-0.104), respectively. As a result of sorptive removal by zeolite, a reduction in odor strength, measured as odor intensity (OI), was recorded from the minimum of approximately 0.7 OI units (indole [from 2.4 to 1.6]), skatole [2.2 to 1.4], and p-cresol [5.1 to 4.4]) to the maximum of approximately 4 OI units (methanethiol [11.4 to 7.5], n-valeric acid [10.4 to 6.5], i-butyric acid [7.9 to 4.4], and propionic acid [7.2 to 3.7]). Likewise, when removal was examined in terms of odor activity value (OAV), the extent of reduction was significant (i.e., 1000-fold) in the increasing order of amy acetate, i-butyric acid, phenol, propionic acid, and ammonia.

Effect of Low-Level Laser to Oral Microorganisms (저출력 레이저가 구강미생물에 미치는 영향)

  • Yoon, In-Jong;Auh, Q-Schick;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.35 no.1
    • /
    • pp.31-39
    • /
    • 2010
  • This study is to observe the bacteriocidal effect of the Low Level Laser (LLL) against oral microorganisms which are related to the occurrence of periodontal diseases and oral malodors. The Porphyromonas gingivalis 2561 (P. gingivalis 2561) and Prevotella intermedia (Pr. intermedia) were treated with photosensitizing substance-toluidine blue O (TBO; C.I. 52040) and then radiated with the LLL which has 650nm wavelength for 1, 2, 3 and 5mins. continuously upon varying distances of 1, 2 and 3cm for each experimental groups. The results are as follows; 1. The P. gingivalis 2561 which was treated with TBO and then radiated with LLL at a distance of 3cm for 1min. showed 99.99% higher antibacterial effect in comparison to the experimental group treated only with TBO. 2. The Pr. intermedia which was treated with TBO and then radiated with LLL at a distance of 3cm for 1min. showed 99.8% higher antibacterial effect in comparison to the experimental group treated only with TBO. 3. The bacteriocidal effect of the P. gingivalis 2561 treated with TBO was found to gradually increase as the radiation time of LLL extended from 1min. to 3min. at 1min. intervals. 4. A slight decrease in bacteriocidal effect of the P. gingivalis 2561 was found as the radiation distance of LLL increased from 1cm to 3cm at 1cm intervals. 5. The bacteriocidal effect of the Pr. intermedia was found to slightly decrease as the radiation distance of LLL increased from 1cm to 3cm at 1cm. intervals. As the results shown above suggest, the bacteriocidal effect of LLL was found to increase as the radiation time extended and the distance shortened. Moreover, even the experimental group radiated with LLL at 3cm distance for 1min. which showed the lowest level of bacteriocidal effect, was found to have 99.8% higher bacteriocidal effect than the experimental group which was treated only with TBO and, therefore, this clearly shows the bacteriocidal effect of LLL against oral microorganisms. Thus, the use of LLL is thought to become very useful for suportive treatment for periodontitis and implantitis, and controlling oral malodors as long as it is used within the limits where there is no side effect.

Evaluations on Deodorization Effect and Anti-oral Microbial Activity of Essential Oil from Pinus koraiensis (잣나무 정유의 소취효과 및 구강균에 대한 항균활성 평가)

  • Hwang, Hyun Jung;Yu, Jung-Sik;Lee, Ha Yeon;Kwon, Dong-Joo;Han, Woong;Heo, Seong-Il;Kim, Sun Young
    • Korean Journal of Plant Resources
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Essential oils of various plants have been known for potential biological effects such as antibacterial, antifungal, spasmolytic, antiplasmodial activities and insect-repellent property. Recently, the essential oils have attracted considerable interest in oral disease therapy. This essential oil has been known as being effective on easing sick house syndrome, giving forest aroma therapy effect and acting as repellent against pest. The essential oil of Pinus koraiensi, a native plant from Hongcheon-gun, Gangwon-do, was obtained by hydrodistillation. In light of its medicinal importance, in this study its composition, antibacterial activity and the reducing effect of offensive odor have been analyzed. The composition of essential oil was determined by GC and GC-MS. We have identified 14 compounds, of which 1R-${\alpha}$-pinene (19.38 %), 3-carene (10.21 %), camphene (9.82 %), limonene (9.00 %), bicyclo[2,2,1] heptan-2-ol (8.76 %) and ${\beta}$-phellandrene (7.98 %) were the main components. Essential oils from P. koraiensis, Chamaecyparis obtusa, Abies holophylla and Pinus densiflora were compared in terms of alleviating effect of malodors caused from formaldehyde, ammonia, trimethylamine and methylmercaptan. P. koraiensis essential oil was found to decrease the amounts of ammonia and trimethylamine by 75.17 % and 77.36 %, respectively. Antibacterial activity against Streptococcus mutans and Streptococcus sobrinus, which were known as oral cavity inducer, was investigated using the paper disc agar diffusion method. The inhibition zone was observed against S. mutans (5.97 mm) and S. sobrinus (1.40 mm), respectively. P. koraiensis essential oil shown effective deodorization and inhibitory activity against oral cavity in this study might be potential material in oral sanitary industry.