• Title/Summary/Keyword: malicious model

Search Result 231, Processing Time 0.025 seconds

An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost (비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형)

  • Lee, Hyeon-Uk;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.157-173
    • /
    • 2011
  • As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. This means the fatal damage can be caused by these intrusions in the government agency, public office, and company operating various systems. For such reasons, there are growing interests and demand about the intrusion detection systems (IDS)-the security systems for detecting, identifying and responding to unauthorized or abnormal activities appropriately. The intrusion detection models that have been applied in conventional IDS are generally designed by modeling the experts' implicit knowledge on the network intrusions or the hackers' abnormal behaviors. These kinds of intrusion detection models perform well under the normal situations. However, they show poor performance when they meet a new or unknown pattern of the network attacks. For this reason, several recent studies try to adopt various artificial intelligence techniques, which can proactively respond to the unknown threats. Especially, artificial neural networks (ANNs) have popularly been applied in the prior studies because of its superior prediction accuracy. However, ANNs have some intrinsic limitations such as the risk of overfitting, the requirement of the large sample size, and the lack of understanding the prediction process (i.e. black box theory). As a result, the most recent studies on IDS have started to adopt support vector machine (SVM), the classification technique that is more stable and powerful compared to ANNs. SVM is known as a relatively high predictive power and generalization capability. Under this background, this study proposes a novel intelligent intrusion detection model that uses SVM as the classification model in order to improve the predictive ability of IDS. Also, our model is designed to consider the asymmetric error cost by optimizing the classification threshold. Generally, there are two common forms of errors in intrusion detection. The first error type is the False-Positive Error (FPE). In the case of FPE, the wrong judgment on it may result in the unnecessary fixation. The second error type is the False-Negative Error (FNE) that mainly misjudges the malware of the program as normal. Compared to FPE, FNE is more fatal. Thus, when considering total cost of misclassification in IDS, it is more reasonable to assign heavier weights on FNE rather than FPE. Therefore, we designed our proposed intrusion detection model to optimize the classification threshold in order to minimize the total misclassification cost. In this case, conventional SVM cannot be applied because it is designed to generate discrete output (i.e. a class). To resolve this problem, we used the revised SVM technique proposed by Platt(2000), which is able to generate the probability estimate. To validate the practical applicability of our model, we applied it to the real-world dataset for network intrusion detection. The experimental dataset was collected from the IDS sensor of an official institution in Korea from January to June 2010. We collected 15,000 log data in total, and selected 1,000 samples from them by using random sampling method. In addition, the SVM model was compared with the logistic regression (LOGIT), decision trees (DT), and ANN to confirm the superiority of the proposed model. LOGIT and DT was experimented using PASW Statistics v18.0, and ANN was experimented using Neuroshell 4.0. For SVM, LIBSVM v2.90-a freeware for training SVM classifier-was used. Empirical results showed that our proposed model based on SVM outperformed all the other comparative models in detecting network intrusions from the accuracy perspective. They also showed that our model reduced the total misclassification cost compared to the ANN-based intrusion detection model. As a result, it is expected that the intrusion detection model proposed in this paper would not only enhance the performance of IDS, but also lead to better management of FNE.

ID-Based Proxy Re-encryption Scheme with Chosen-Ciphertext Security (CCA 안전성을 제공하는 ID기반 프락시 재암호화 기법)

  • Koo, Woo-Kwon;Hwang, Jung-Yeon;Kim, Hyoung-Joong;Lee, Dong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.64-77
    • /
    • 2009
  • A proxy re-encryption scheme allows Alice to temporarily delegate the decryption rights to Bob via a proxy. Alice gives the proxy a re-encryption key so that the proxy can convert a ciphertext for Alice into the ciphertext for Bob. Recently, ID-based proxy re-encryption schemes are receiving considerable attention for a variety of applications such as distributed storage, DRM, and email-forwarding system. And a non-interactive identity-based proxy re-encryption scheme was proposed for achieving CCA-security by Green and Ateniese. In the paper, we show that the identity-based proxy re-encryption scheme is unfortunately vulnerable to a collusion attack. The collusion of a proxy and a malicious user enables two parties to derive other honest users' private keys and thereby decrypt ciphertexts intended for only the honest user. To solve this problem, we propose two ID-based proxy re-encryption scheme schemes, which are proved secure under CPA and CCA in the random oracle model. For achieving CCA-security, we present self-authentication tag based on short signature. Important features of proposed scheme is that ciphertext structure is preserved after the ciphertext is re-encrypted. Therefore it does not lead to ciphertext expansion. And there is no limitation on the number of re-encryption.

Efficient Poisoning Attack Defense Techniques Based on Data Augmentation (데이터 증강 기반의 효율적인 포이즈닝 공격 방어 기법)

  • So-Eun Jeon;Ji-Won Ock;Min-Jeong Kim;Sa-Ra Hong;Sae-Rom Park;Il-Gu Lee
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • Recently, the image processing industry has been activated as deep learning-based technology is introduced in the image recognition and detection field. With the development of deep learning technology, learning model vulnerabilities for adversarial attacks continue to be reported. However, studies on countermeasures against poisoning attacks that inject malicious data during learning are insufficient. The conventional countermeasure against poisoning attacks has a limitation in that it is necessary to perform a separate detection and removal operation by examining the training data each time. Therefore, in this paper, we propose a technique for reducing the attack success rate by applying modifications to the training data and inference data without a separate detection and removal process for the poison data. The One-shot kill poison attack, a clean label poison attack proposed in previous studies, was used as an attack model. The attack performance was confirmed by dividing it into a general attacker and an intelligent attacker according to the attacker's attack strategy. According to the experimental results, when the proposed defense mechanism is applied, the attack success rate can be reduced by up to 65% compared to the conventional method.

A Software Vulnerability Analysis System using Learning for Source Code Weakness History (소스코드의 취약점 이력 학습을 이용한 소프트웨어 보안 취약점 분석 시스템)

  • Lee, Kwang-Hyoung;Park, Jae-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.46-52
    • /
    • 2017
  • Along with the expansion of areas in which ICT and Internet of Things (IoT) devices are utilized, open source software has recently expanded its scope of applications to include computers, smart phones, and IoT devices. Hence, as the scope of open source software applications has varied, there have been increasing malicious attempts to attack the weaknesses of open source software. In order to address this issue, various secure coding programs have been developed. Nevertheless, numerous vulnerabilities are still left unhandled. This paper provides some methods to handle newly raised weaknesses based on the analysis of histories and patterns of previous open source vulnerabilities. Through this study, we have designed a weaknesses analysis system that utilizes weakness histories and pattern learning, and we tested the performance of the system by implementing a prototype model. For five vulnerability categories, the average vulnerability detection time was shortened by about 1.61 sec, and the average detection accuracy was improved by 44%. This paper can provide help for researchers studying the areas of weaknesses analysis and for developers utilizing secure coding for weaknesses analysis.

Adaptive Consensus Bound PBFT Algorithm Design for Eliminating Interface Factors of Blockchain Consensus (블록체인 합의 방해요인 제거를 위한 Adaptive Consensus Bound PBFT 알고리즘 설계)

  • Kim, Hyoungdae;Yun, Jusik;Goh, Yunyeong;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.17-31
    • /
    • 2020
  • With the rapid development of block chain technology, attempts have been made to put the block chain technology into practical use in various fields such as finance and logistics, and also in the public sector where data integrity is very important. Defense Operations In addition, strengthening security and ensuring complete integrity of the command communication network is crucial for operational operation under the network-centered operational environment (NCOE). For this purpose, it is necessary to construct a command communication network applying the block chain network. However, the block chain technology up to now can not solve the security issues such as the 51% attack. In particular, the Practical Byzantine fault tolerance (PBFT) algorithm which is now widely used in blockchain, does not have a penalty factor for nodes that behave maliciously, and there is a problem of failure to make a consensus even if malicious nodes are more than 33% of all nodes. In this paper, we propose a Adaptive Consensus Bound PBFT (ACB-PBFT) algorithm that incorporates a penalty mechanism for anomalous behavior by combining the Trust model to improve the security of the PBFT, which is the main agreement algorithm of the blockchain.

Detection Model of Malicious Nodes of Tactical Network for Korean-NCW Environment (한국형 NCW를 위한 전술네트워크에서의 악의적인 노드 검출 모델)

  • Yang, Ho-Kyung;Cha, Hyun-Jong;Shin, Hyo-Young;Ryou, Hwang-Bin;Jo, Yong-Gun
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • NCW(Network Centric- Warfare) encompasses the concept to use computer data processing and network linkage communications techniques, share information and furthermore, enhance the effectiveness of computer-operating systems. As IT(Information & Technology) have become developed in the recent years, the existing warfare system-centered conventional protocol is not use any longer. Instead, network-based NCW is being widely-available, today. Under this changing computer environment, it becomes important to establish algorithm and build the stable communication systems. Tools to identify malign node factors through Wireless Ad-hoc network cause a tremendous error to analyze and use paths of even benign node factors misreported to prove false without testing or indentifying such factors to an adequate level. These things can become an obstacle in the process of creating the optimum network distribution environment. In this regard, this thesis is designed to test and identify paths of benign node factors and then, present techniques to transmit data through the most significant open short path, with the tool of MP-SAR Protocol, security path search provider, in Ad-hoc NCW environment. Such techniques functions to identify and test unnecessary paths of node factors, and thus, such technique users can give an easy access to benign paths of node factors.

A Study on security characteristics and vulnerabilities of BAS(Building Automation System) (BAS의 보안 특성 및 취약점에 관한 연구)

  • Choi, Yeon-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.669-676
    • /
    • 2017
  • Recently, due to the importance of information security, security vulnerability analysis and various information protection technologies and security systems are being introduced as a countermeasure against cyber-attacks in new as well as existing buildings, and information security studies on high-rise buildings are also being conducted. However, security system introduction and research are generally performed from the viewpoint of general IT systems and security policies, so there is little consideration of the infrastructure of the building. In particular, the BAS or building infrastructure, is a closed system, unlike typical IT systems, but has unique structural features that accommodate open functions. Insufficient understanding of these system structures and functions when establishing a building security policy makes the information security policies for the BAS vulnerable and increases the likelihood that all of the components of the building will be exposed to malicious cyber-attacks via the BAS. In this paper, we propose an architecture reference model that integrates three different levels of BAS structure (from?) different vendors. The architectures derived from this study and the security characteristics and vulnerabilities at each level will contribute to the establishment of security policies that reflect the characteristics of the BAS and the improvement of the safety management of buildings.

Proposal and Analysis of Primality and Safe Primality test using Sieve of Euler (오일러체를 적용한 소수와 안전소수의 생성법 제안과 분석)

  • Jo, Hosung;Lee, Jiho;Park, Heejin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.438-447
    • /
    • 2019
  • As the IoT-based hyper-connected society grows, public-key cryptosystem such as RSA is frequently used for encryption, authentication, and digital signature. Public-key cryptosystem use very large (safe) prime numbers to ensure security against malicious attacks. Even though the performance of the device has greatly improved, the generation of a large (safe)prime is time-consuming or memory-intensive. In this paper, we propose ET-MR and ET-MR-MR using Euler sieve so it runs faster while using less memory. We present a running time prediction model by probabilistic analysis and compare time and memory of our method with conventional methods. Experimental results show that the difference between the expected running time and the measured running time is less than 4%. In addition, the fastest running time of ET-MR is 36% faster than that of TD-MR, 8.5% faster than that of DT-MR and the fastest running time of ET-MR-MR is 65.3% faster than that of TD-MR-MR and similar to that of DT-MR-MR. When k=12,381, the memory usage of ET-MR is 2.7 times more than that of DT-MR but 98.5% less than that of TD-MR and when k=65,536, the memory usage of ET-MR-MR is 98.48% less than that of TD-MR-MR and 92.8% less than that of DT-MR-MR.

Design and Implementation of an E-mail Worm-Virus Filtering System on MS Windows (MS 윈도우즈에서 E-메일 웜-바이러스 차단 시스템의 설계 및 구현)

  • Choi Jong-Cheon;Chang Hye-Young;Cho Seong-Je
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.37-47
    • /
    • 2005
  • Recently, the malicious e-mail worm-viruses have been widely spreaded over the Internet. If the recipient opens the e-mail attachment or an e-mail itself that contains the worm-virus, the worm-virus can be activated and then cause a tremendous damage to the system by propagating itself to everyone on the mailing list in the user's e-mail package. In this paper, we have designed and implemented two methods blocking e-mail worm-viruses. In the fist method, each e-mail is transmitted only by sender activity such as the click of button on a mail client application. In the second one, we insert the two modules into the sender side, where the one module transforms a recipient's address depending on a predefined rule only in time of pushing button and the other converts the address reversely with the former module whenever an e-mail is sent. The lader method also supports a polymorphism model in order to cope with the new types of e-mail worm-virus attacks. The two methods are designed not to work for the e-mail viruses. There is no additional fraction on the receiver's side of the e-mail system. Experimental results show that the proposed methods can screen the e-mail worm-viruses efficiently with a low overhead.

A study on machine learning-based defense system proposal through web shell collection and analysis (웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구)

  • Kim, Ki-hwan;Shin, Yong-tae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.