• Title/Summary/Keyword: malicious model

Search Result 224, Processing Time 0.028 seconds

QSDB: An Encrypted Database Model for Privacy-Preserving in Cloud Computing

  • Liu, Guoxiu;Yang, Geng;Wang, Haiwei;Dai, Hua;Zhou, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3375-3400
    • /
    • 2018
  • With the advent of database-as-a-service (DAAS) and cloud computing, more and more data owners are motivated to outsource their data to cloud database in consideration of convenience and cost. However, it has become a challenging work to provide security to database as service model in cloud computing, because adversaries may try to gain access to sensitive data, and curious or malicious administrators may capture and leak data. In order to realize privacy preservation, sensitive data should be encrypted before outsourcing. In this paper, we present a secure and practical system over encrypted cloud data, called QSDB (queryable and secure database), which simultaneously supports SQL query operations. The proposed system can store and process the floating point numbers without compromising the security of data. To balance tradeoff between data privacy protection and query processing efficiency, QSDB utilizes three different encryption models to encrypt data. Our strategy is to process as much queries as possible at the cloud server. Encryption of queries and decryption of encrypted queries results are performed at client. Experiments on the real-world data sets were conducted to demonstrate the efficiency and practicality of the proposed system.

HB-DIPM: Human Behavior Analysis-Based Malware Detection and Intrusion Prevention Model in the Future Internet

  • Lee, Jeong Kyu;Moon, Seo Yeon;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.489-501
    • /
    • 2016
  • As interest in the Internet increases, related technologies are also quickly progressing. As smart devices become more widely used, interest is growing in words are missing here like "improving the" or "figuring out how to use the" future Internet to resolve the fundamental issues of transmission quality and security. The future Internet is being studied to improve the limits of existing Internet structures and to reflect new requirements. In particular, research on words are missing here like "finding new forms of" or "applying new forms of" or "studying various types of" or "finding ways to provide more" reliable communication to connect the Internet to various services is in demand. In this paper, we analyze the security threats caused by malicious activities in the future Internet and propose a human behavior analysis-based security service model for malware detection and intrusion prevention to provide more reliable communication. Our proposed service model provides high reliability services by responding to security threats by detecting various malware intrusions and protocol authentications based on human behavior.

Secure Data Management based on Proxy Re-Encryption in Mobile Cloud Environment (모바일 클라우드 환경에서 안전한 프록시 재암호화 기반의 데이터 관리 방식)

  • Song, You-Jin;Do, Jeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4B
    • /
    • pp.288-299
    • /
    • 2012
  • To ensure data confidentiality and fine-grained access control in business environment, system model using KP-ABE(Key Policy-Attribute Based Encryption) and PRE(Proxy Re-Encryption) has been proposed recently. However, in previous study, data confidentiality has been effected by decryption right concentrated on cloud server. Also, Yu's work does not consider a access privilege management, so existing work become dangerous to collusion attack between malicious user and cloud server. To resolve this problem, we propose secure system model against collusion attack through dividing data file into header which is sent to privilege manager group and body which is sent to cloud server and prevent modification attack for proxy re-encryption key using d Secret Sharing, We construct protocol model in medical environment.

A Provable Authenticated Certificateless Group Key Agreement with Constant Rounds

  • Teng, Jikai;Wu, Chuankun
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.104-110
    • /
    • 2012
  • Group key agreement protocols allow a group of users, communicating over a public network, to establish a shared secret key to achieve a cryptographic goal. Protocols based on certificateless public key cryptography (CL-PKC) are preferred since CL-PKC does not need certificates to guarantee the authenticity of public keys and does not suffer from key escrow of identity-based cryptography. Most previous certificateless group key agreement protocols deploy signature schemes to achieve authentication and do not have constant rounds. No security model has been presented for group key agreement protocols based on CL-PKC. This paper presents a security model for a certificateless group key agreement protocol and proposes a constant-round group key agreement protocol based on CL-PKC. The proposed protocol does not involve any signature scheme, which increases the efficiency of the protocol. It is formally proven that the proposed protocol provides strong AKE-security and tolerates up to $n$-2 malicious insiders for weak MA-security. The protocol also resists key control attack under a weak corruption model.

Security Vulnerability Verification for Open Deep Learning Libraries (공개 딥러닝 라이브러리에 대한 보안 취약성 검증)

  • Jeong, JaeHan;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.117-125
    • /
    • 2019
  • Deep Learning, which is being used in various fields recently, is being threatened with Adversarial Attack. In this paper, we experimentally verify that the classification accuracy is lowered by adversarial samples generated by malicious attackers in image classification models. We used MNIST dataset and measured the detection accuracy by injecting adversarial samples into the Autoencoder classification model and the CNN (Convolution neural network) classification model, which are created using the Tensorflow library and the Pytorch library. Adversarial samples were generated by transforming MNIST test dataset with JSMA(Jacobian-based Saliency Map Attack) and FGSM(Fast Gradient Sign Method). When injected into the classification model, detection accuracy decreased by at least 21.82% up to 39.08%.

Deep Learning in Drebin: Android malware Image Texture Median Filter Analysis and Detection

  • Luo, Shi-qi;Ni, Bo;Jiang, Ping;Tian, Sheng-wei;Yu, Long;Wang, Rui-jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3654-3670
    • /
    • 2019
  • This paper proposes an Image Texture Median Filter (ITMF) to analyze and detect Android malware on Drebin datasets. We design a model of "ITMF" combined with Image Processing of Median Filter (MF) to reflect the similarity of the malware binary file block. At the same time, using the MAEVS (Malware Activity Embedding in Vector Space) to reflect the potential dynamic activity of malware. In order to ensure the improvement of the classification accuracy, the above-mentioned features(ITMF feature and MAEVS feature)are studied to train Restricted Boltzmann Machine (RBM) and Back Propagation (BP). The experimental results show that the model has an average accuracy rate of 95.43% with few false alarms. to Android malicious code, which is significantly higher than 95.2% of without ITMF, 93.8% of shallow machine learning model SVM, 94.8% of KNN, 94.6% of ANN.

CCTV-Based Multi-Factor Authentication System

  • Kwon, Byoung-Wook;Sharma, Pradip Kumar;Park, Jong-Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.904-919
    • /
    • 2019
  • Many security systems rely solely on solutions based on Artificial Intelligence, which are weak in nature. These security solutions can be easily manipulated by malicious users who can gain unlawful access. Some security systems suggest using fingerprint-based solutions, but they can be easily deceived by copying fingerprints with clay. Image-based security is undoubtedly easy to manipulate, but it is also a solution that does not require any special training on the part of the user. In this paper, we propose a multi-factor security framework that operates in a three-step process to authenticate the user. The motivation of the research lies in utilizing commonly available and inexpensive devices such as onsite CCTV cameras and smartphone camera and providing fully secure user authentication. We have used technologies such as Argon2 for hashing image features and physically unclonable identification for secure device-server communication. We also discuss the methodological workflow of the proposed multi-factor authentication framework. In addition, we present the service scenario of the proposed model. Finally, we analyze qualitatively the proposed model and compare it with state-of-the-art methods to evaluate the usability of the model in real-world applications.

Adaptive boosting in ensembles for outlier detection: Base learner selection and fusion via local domain competence

  • Bii, Joash Kiprotich;Rimiru, Richard;Mwangi, Ronald Waweru
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.886-898
    • /
    • 2020
  • Unusual data patterns or outliers can be generated because of human errors, incorrect measurements, or malicious activities. Detecting outliers is a difficult task that requires complex ensembles. An ideal outlier detection ensemble should consider the strengths of individual base detectors while carefully combining their outputs to create a strong overall ensemble and achieve unbiased accuracy with minimal variance. Selecting and combining the outputs of dissimilar base learners is a challenging task. This paper proposes a model that utilizes heterogeneous base learners. It adaptively boosts the outcomes of preceding learners in the first phase by assigning weights and identifying high-performing learners based on their local domains, and then carefully fuses their outcomes in the second phase to improve overall accuracy. Experimental results from 10 benchmark datasets are used to train and test the proposed model. To investigate its accuracy in terms of separating outliers from inliers, the proposed model is tested and evaluated using accuracy metrics. The analyzed data are presented as crosstabs and percentages, followed by a descriptive method for synthesis and interpretation.

Multi-objective Optimization Model for C-UAS Sensor Placement in Air Base (공군기지의 C-UAS 센서 배치를 위한 다목적 최적화 모델)

  • Shin, Minchul;Choi, Seonjoo;Park, Jongho;Oh, Sangyoon;Jeong, Chanki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Recently, there are an increased the number of reports on the misuse or malicious use of an UAS. Thus, many researchers are studying on defense schemes for UAS by developing or improving C-UAS sensor technology. However, the wrong placement of sensors may lead to a defense failure since the proper placement of sensors is critical for UAS defense. In this study, a multi-object optimization model for C-UAS sensor placement in an air base is proposed. To address the issue, we define two objective functions: the intersection ratio of interested area and the minimum detection range and try to find the optimized placement of sensors that maximizes the two functions. C-UAS placement model is designed using a NSGA-II algorithm, and through experiments and analyses the possibility of its optimization is verified.

Mitigation of Phishing URL Attack in IoT using H-ANN with H-FFGWO Algorithm

  • Gopal S. B;Poongodi C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1916-1934
    • /
    • 2023
  • The phishing attack is a malicious emerging threat on the internet where the hackers try to access the user credentials such as login information or Internet banking details through pirated websites. Using that information, they get into the original website and try to modify or steal the information. The problem with traditional defense systems like firewalls is that they can only stop certain types of attacks because they rely on a fixed set of principles to do so. As a result, the model needs a client-side defense mechanism that can learn potential attack vectors to detect and prevent not only the known but also unknown types of assault. Feature selection plays a key role in machine learning by selecting only the required features by eliminating the irrelevant ones from the real-time dataset. The proposed model uses Hyperparameter Optimized Artificial Neural Networks (H-ANN) combined with a Hybrid Firefly and Grey Wolf Optimization algorithm (H-FFGWO) to detect and block phishing websites in Internet of Things(IoT) Applications. In this paper, the H-FFGWO is used for the feature selection from phishing datasets ISCX-URL, Open Phish, UCI machine-learning repository, Mendeley website dataset and Phish tank. The results showed that the proposed model had an accuracy of 98.07%, a recall of 98.04%, a precision of 98.43%, and an F1-Score of 98.24%.