• Title/Summary/Keyword: male gonadal development

Search Result 95, Processing Time 0.023 seconds

Reproduction and Embryonic Development within the Maternal Body of Ovoviviparous Teleost, Sebastes inermis (란태생 경골어류 볼락, Sebastes inermis의 생식과 체내자어발달)

  • LEE Taek-Yuil;KIM Sung-Yeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.413-431
    • /
    • 1992
  • Gonadal development, fertilization and egg development in the maternal body and reproductive cycle of ovoviviparous rockfish, Sebastes inermis, were investigated histologically. Gonadosomatic index(GSI) of male and female were increased from September and reached maximum values in December. In the male, GSI decreased from January, but in the female maintained high values till February and decreased from March. Hepatosomatic index(HSI) was related to GSI conversely. In both sex, HSI increased from February and reached maximum in August as the gonad were degenerating and resting, and began to decrease from September as gonad were glowing. This ovoviviparous rockfish copulates in December. Fertilization with sperms maintained between ovulated oocytes in the ovary occurs in January mainly. Egg development in the ovarian cavity and discharging of hatched preiarva occurs from January to February. The reproductive cycle includes the successive stages: Growing(September), Mature (October-November), Ripe and Fertilization(Decembr-Janua), Egg development and Discharging of hatched larva(January-February), Degeneration and Resting(February-August). According to the frequency distribution of egg diameter and histological observation, the ovoviviparous rockfish discharged the prelarva at a time in a spawning season. The sexual maturation is first attained at 2 ages. All females and males reaches first maturity at body length of 17.1cm and 15.1cm respectively. The mean number of the embryos increased with the increase of the total length of female.

  • PDF

Spawning Period and Sex Inversion of Black Seabream Acanthopagrus schlegelii Collected off the Coast of Tongyeong, Korea (통영 연안에서 채집된 감성돔(Acanthopagrus schlegelii)의 산란시기와 성전환)

  • Lee, Hae Won;Jeong, Jae Mook;Yu, Hyo Jae;Hwang, Kang Seok;Oh, Si Eun;Song, Se Hyun
    • Korean Journal of Ichthyology
    • /
    • v.33 no.1
    • /
    • pp.37-42
    • /
    • 2021
  • This study sought to reveal spawning period and sex inversion of black seabream, Acanthopagrus schlegelii collected off the coast of Tongyeong, Korea. The monthly gonodosomatic index (GSI) showed the same pattern of between both sexes, and it was estimated that black seabream spawned once a year (between April and May). Histological examination revealed the transition from male to female sex, size of fork length bisexual gonad with ovarian (primary hermaphrodite; progress from male to female, MF) was seen at 20.5 to 39.6 cm and bisexual gonad with testicular (post hermaphrodite; female development and Male degeneration, FM) was seen at 26.4 to 50.2 cm. The egg diameters was in the range of 0.02 to 0.60 mm, with the smallest average egg diameter of 0.09 mm in February, the highest average egg diameters of 0.43 mm in August, and the range of fecundity was number of eggs 277,148 (33.9 cm) to 2,772,421 (34.1 cm).

Annual Reproductive Cycle and Embryonic Development within the Maternal Body of the Marbled Rockfish, Sebastiscus marmoratus from the Cheju Island (제주산 씀뱅리 (Sebastiscus marmoratus)의 생식년주기와 체내자어 발달)

  • BAE Hee Chan;CHUNG Sang Chul;LEE Jung Jea;LEE Young Don
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.489-499
    • /
    • 1998
  • Gonadal development, reproductive cycle and embryonic development of the marbled rockfish, Sebastiscus marmoratus were investigated histologically. A total of 1,035 specimens were collected from the Cheju Island from July of 1992 to May of 1996. Gonadosomatic index (GSI) in female reached the maximum during October to March, thereafter, the values decreased from Norvember to April. GSI in male reached the maximum in September (before one to three months of the female's maximum), thereafter, the values rapidly decreased from October to December. The annual reproductive cycle can be divided into five stages in female and four stages in male: females, Growing(June to September), Mature(September to February), Ripe and copulation(October to March), Gestation and parturition(November to April), Degenerative and resting(December to May); in males, Growing(April to July), Mature(August to November), Ripe and copulation(September to December), and Degenerstive and resting(November to March). Size frequency distribution of eggs and larvae showed non-synchrony. Maternal larvae parturition occurred one or two time during November to April. Mean length of the larvae parturition was 3.5 mm. Mean number of eggs and maternal larvae for the 15 cm minimum class of female was 58,377, and fecundity increased with the increase of total length and body weight.

  • PDF

Effects of Polychlorinated Biphenyls on the Expression of KAP3 Gene Involved in the 'Critical Period' of Rat Brain Sexual Differentiation

  • Lee, Chae-Kwan;Kang, Han-Seung;June, Bu-ll;Lee, Byung-Ju;Moon, Deog-Hwan;Kang, Sung-Goo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.327-331
    • /
    • 2001
  • There is a critical developmental period during which brain sexual differentiation proceeds irreversibly under the influence of gonadal hormone. Recently, kinesin superfamily-associated protein 3 (KAP3) gene expressed during the 'critical period' of rat brain differentiation was identified by us (Choi and Lee, 1999). KAP3 functions as a microtubule-based motor that transports membranous organelles anterogradely in cells, including neurons (Yamazaki et al., 1996). mRNA level of KAP3 gene markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited the prepubertal increase in KAP3 mRNA level (Choi and Lee, 1999). In the present study, we aimed to investigate the effects of polychlorinated biphenyls (PCBs), as endocrine disruptors (EDs) on the expression of KAP3 gene during the 'critical period' of rat brain development. In our data, PCBs significantly decreased the expression of KAP3 gene in the fetal (day 17) and the neonatal (day 6 after birth in) male and female rat brains. The body weight and the breeding ability were significantly decreased in the PCBs-exposed rats compared with the control. These results showed that PCBs affect the transcriptional level of brain sexual differentiation related gene, KAP3, in the fetal and the neonatal rat brains. The maternal exposure to the PCBs may lead to toxic response in embryonic brain sexual differentiation and breeding ability after sexual maturation. This study indicates that KAP3 gene may be useful as a gene marker to analyze the molecular mechanism of toxic response in the animal brain development and sexual maturation exposed to PCBs.

  • PDF

Early Gonadogenesis and Sex Differentiation of a Marine Medaka, Oryzias dancena (Beloniformes; Teleostei) (해산 송사리 Oryzias dancena의 초기 생식소 형성 및 성분화)

  • Song, Ha Yeun;Nam, Yoon Kwon;Bang, In-Chul;Kim, Dong Soo
    • Korean Journal of Ichthyology
    • /
    • v.21 no.3
    • /
    • pp.141-148
    • /
    • 2009
  • Sex differentiation and gonad development were investigated in a marine medaka species, Oryzias dancena (Beloniformes; Teleostei). The average time to hatch was 11 days post-fertilization (dpf) at $25^{\circ}C$. Primordial germ cell (PGC) was first observed at 5 dpf and migrated to presumptive gonadal area between the gut and pronephric duct at 9 dpf. Male and female gonads were morphologically differentiated at 12 days post-hatching (dph). Early oocytes at perinucleolus stage as well as the formation of spermatid and efferent duct were observed at 28 dph. At 6 weeks of age, the ovary exhibited yolk granulation in many oocytes, while testis possessed a considerable number of spermatogonia and spermatids. The first ovulation was observed in 9-week-old females, and at the same age, males contained fully-matured spermatozoa. Data obtained in this study indicate that the gonad differentiation of O. dancena is the typical type of differentiated gonochorism.

Sexual Differentiation and Androgen Sex Reversal of Oreochromis niloticus (나일틸라피아의 성분화와 호르몬에 의한 성전환)

  • KIM Dong Soo;BANG In Chul;KIM In-Bae
    • Journal of Aquaculture
    • /
    • v.1 no.1
    • /
    • pp.53-66
    • /
    • 1988
  • Histological study was conducted to determine the initial treatment time and treatment period of hormone for sex reversal in accordance with gonadal development and sexual differentiation in Oreochromis niloticus. The effects of various concentrations and various treatment periods of 17$\alpha$-methyltestosterone (MT) on sex reversal, growth, and condition factor were also evaluated. Paired primodial gonads were formed 9 days after hatching, when germ cells began their gradual multiplication and development into gonial ones. Sex differentiation of gonads either into ovaries or testes became histologically discernible about 20 days after hatching with formation of ovarian cavity and efferent duct. All feed treated with MT at 15 ppm for 10 days or more produced populations of males $95\%$ or above. All male populations were produced at 15 ppm MT for 40 days, and 30 ppm for 30 and 40 days. Growth of hormone-treated-fish was faster than that of untreated ones and the condition factor of hormone-treated-fish was greater than that of untreated ones 77 days after hatching.

  • PDF

Reproductive Cycle of the Melanin Snail, Semisulcospira libertina libertina (다슬기(Semisulcospira libertina libertina)의 번식주기)

  • 장영진;장해진;민병화;방인철
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.175-180
    • /
    • 2000
  • The reproductive cycle of ovoviviparous melania snail, Semisulcospira libeytina libertina was studied in the valley near Naewon Temple in Yangsan, Korea. Water temperature (WT) of the habitat ranged from 1.3$^{\circ}C$ to 22.5$^{\circ}C$ The meat weight rate (MWR) reached the maximum with the beginning of WT increase in March and the minimum in August. Monthly changes in average oocyte diameter showed the maximum (249.6$\pm$2.6 ${\mu}{\textrm}{m}$) in July and the minimum (134.3$\pm$2.8 ${\mu}{\textrm}{m}$) in December S. libertina libertina seemed to be a year-round breeder except for mid-summer and mid-winter. Two main reproductive cycle of the species could be divided into five successive stages: multiplicative (March, October), growing (April and May, November), mature (June and July, December), ovulation (August, January), parturition (September and October, March to May) and resting (September, February) stages in female and multiplicative (March, October), growing (April, November), mature (March to June, December), copulatory (July and August, January), resting (September, February) stages in male.

  • PDF

Reproductive Cycle of the Red Marbled Rockfish Sebastiscus tertius (붉은쏨뱅이(Sebastiscus tertius)의 생식 주기)

  • Lim, Sang-Gu;Kim, Kawang-Su;Kim, Chul-Won;Kim, Jung-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.701-708
    • /
    • 2011
  • The aim of the present study was to analyze the reductive cycle of the red marbled rockfish Sebastiscus tertius. The analysis was based on annual changes in the gonadosomatic index (GSI), the hepatosomatic index (HSI), histology of the gonadal structure, and plasma sex steroid hormone levels of adult fish from April 1997 to April 1998. GSI of females began to increase in February and peaked ($10.8{\pm}2.72$) in May. HIS levels ($3.41{\pm}0.49$) peaked in February and elevated plasma steroid hormones ($1.47{\pm}0.75$ ng/mL for estradiol-$17{\beta}$ ($E_2$) and $230.7{\pm}27.6$ pg/mL for testosterone (T)) were observed in April. However, in male fish, GSI levels started to increase in August and remained high until November ($0.21{\pm}0.05$). T levels were was also elevated in August and peaked in October ($188.1{\pm}43.5$ pg/mL) and November ($186.8{\pm}28.0$ pg/mL), but started to decline 1 month than the GSI. These results suggest that female ovoviviparious periods span from April to June and amle mating periods occur from November to February.

The capabilities of migration and differentiation of female primordial germ cells after transferring to male embryos

  • Lee, Young-Mok;Kim, Mi-Ah;Shin, Sang-Su;Park, Tas-Sub;Park, Hyun-Jeong;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.74-76
    • /
    • 2001
  • Comparing to mammals, male bird has the homozygote ZZ and female has the heterozygote n. Therefore, the sex of fertilized eggs is defined by female chromosome constitution. Although this cytological observation had been established, the molecular and cellular mechanism of germ cell differentiation are essentially unknown in aves. Especially, the differentiation of germ cells in mixed-sex chimeras has not yet been clearly elucidated. Primordial germ cells, which are the progenitors of sperm or egg after sexual maturity, firstly arise in the epiblast and migrate to embryonic gonads through the blood vessel. During the embryo development, these PGCs differentiate in the pathway of mate or female, respectively and develop the sperm or egg cells after sexual maturity. In this paper, we confirmed that the female PGCs could migrate into the recipient male gonads after transferring and differentiate into germ cells in the embryonic stages. The primordial germ cells were isolated from the female embryonic gonads of 5.5-day-old incubation and re-injected into the male recipient embryos of 2-day-old incubation, which produced mixed-sex chimera in the germline. The finding in this study demonstrated the ability of migration and differentiation of gonadal primordial germ cells in mixed-sex chicken.

  • PDF

Influence of Melatonin on Reproductive Function in Male Golden Hamsters (수컷 골든 햄스터의 생식기능에 미치는 멜라토닌의 영향)

  • Choi, Don-Chan
    • Development and Reproduction
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Golden hamsters show the reproductive activity that is determined by the photoperiod (length of light per day). Photoperiod is an environmental factor that is predictable through an entire year. The hamsters are sexually active in summer during which day length exceeds night time. The critical length is at least 12.5 hours of light in a day where reproductive function is maintained. The information of photoperiod is mediated by the pineal gland because removal of pineal gland blocks the influence of photoperiod on reproductive activity. The hamsters without pineal gland maintain sexual activity and promote it in a situation that suppresses gonadal activity. The pineal gland secretes melatonin that reflects the photoperiod. The appropriate administrations of melatonin into both pineal intact and pinealectomized hamsters lead to a gonadal reression. The results suggest that melatonin constitutes a part of control mechanism whereby environmental information is transduced to neuroendocrine signal respensible for the functional integrity of the reproductive system. Despite of the intense studies, the action site of melatonin is on the whole unknown. It is mainly due to the lack of acute efffct of melatonin on the secretion of reproductive hormones. However, sexually regressed animals display the low levelsof gonadotropins and the augmentation of the hypothalamic gonadotropin-releasing hormone (GnRH) content, implying that the antigonadotropic effects either by photoperiod and/or by the treatment of melatonin are mediated by the GnRH neuronal system. The action mechanism by which melatonin exerts its effect on GnRH neuron needs to be investigated. Recent cloning of melatonin receptor will contribute to examine various and putative potencies of melatonin via its anatomical identification and the action mechanism of melatonin on target tissues at the molecular level.

  • PDF