• Title/Summary/Keyword: making techniques

Search Result 1,309, Processing Time 0.026 seconds

Effective E-Learning Practices by Machine Learning and Artificial Intelligence

  • Arshi Naim;Sahar Mohammed Alshawaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.209-214
    • /
    • 2024
  • This is an extended research paper focusing on the applications of Machine Learing and Artificial Intelligence in virtual learning environment. The world is moving at a fast pace having the application of Machine Learning (ML) and Artificial Intelligence (AI) in all the major disciplines and the educational sector is also not untouched by its impact especially in an online learning environment. This paper attempts to elaborate on the benefits of ML and AI in E-Learning (EL) in general and explain how King Khalid University (KKU) EL Deanship is making the best of ML and AI in its practices. Also, researchers have focused on the future of ML and AI in any academic program. This research is descriptive in nature; results are based on qualitative analysis done through tools and techniques of EL applied in KKU as an example but the same modus operandi can be implemented by any institution in its EL platform. KKU is using Learning Management Services (LMS) for providing online learning practices and Blackboard (BB) for sharing online learning resources, therefore these tools are considered by the researchers for explaining the results of ML and AI.

CORRECT? CORECT!: Classification of ESG Ratings with Earnings Call Transcript

  • Haein Lee;Hae Sun Jung;Heungju Park;Jang Hyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1090-1100
    • /
    • 2024
  • While the incorporating ESG indicator is recognized as crucial for sustainability and increased firm value, inconsistent disclosure of ESG data and vague assessment standards have been key challenges. To address these issues, this study proposes an ambiguous text-based automated ESG rating strategy. Earnings Call Transcript data were classified as E, S, or G using the Refinitiv-Sustainable Leadership Monitor's over 450 metrics. The study employed advanced natural language processing techniques such as BERT, RoBERTa, ALBERT, FinBERT, and ELECTRA models to precisely classify ESG documents. In addition, the authors computed the average predicted probabilities for each label, providing a means to identify the relative significance of different ESG factors. The results of experiments demonstrated the capability of the proposed methodology in enhancing ESG assessment criteria established by various rating agencies and highlighted that companies primarily focus on governance factors. In other words, companies were making efforts to strengthen their governance framework. In conclusion, this framework enables sustainable and responsible business by providing insight into the ESG information contained in Earnings Call Transcript data.

Predictive Model for Evaluating Startup Technology Efficiency: A Data Envelopment Analysis (DEA) Approach Focusing on Companies Selected by TIPS, a Private-led Technology Startup Support Program

  • Jeongho Kim;Hyunmin Park;JooHee Oh
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.167-179
    • /
    • 2024
  • This study addresses the challenge of objectively evaluating the performance of early-stage startups amidst limited information and uncertainty. Focusing on companies selected by TIPS, a leading private sector-driven startup support policy in Korea, the research develops a new indicator to assess technological efficiency. By analyzing various input and output variables collected from Crunchbase and KIND (Korea Investor's Network for Disclosure System) databases, including technology use metrics, patents, and Crunchbase rankings, the study derives technological efficiency for TIPS-selected startups. A prediction model is then developed utilizing machine learning techniques such as Random Forest and boosting (XGBoost) to classify startups into efficiency percentiles (10th, 30th, and 50th). The results indicate that prediction accuracy improves with higher percentiles based on the technical efficiency index, providing valuable insights for evaluating and predicting startup performance in early markets characterized by information scarcity and uncertainty. Future research directions should focus on assessing growth potential and sustainability using the developed classification and prediction models, aiding investors in making data-driven investment decisions and contributing to the development of the early startup ecosystem.

AI-Enabled Business Models and Innovations: A Systematic Literature Review

  • Taoer Yang;Aqsa;Rafaqat Kazmi;Karthik Rajashekaran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1518-1539
    • /
    • 2024
  • Artificial intelligence-enabled business models aim to improve decision-making, operational efficiency, innovation, and productivity. The presented systematic literature review is conducted to highlight elucidating the utilization of artificial intelligence (AI) methods and techniques within AI-enabled businesses, the significance and functions of AI-enabled organizational models and frameworks, and the design parameters employed in academic research studies within the AI-enabled business domain. We reviewed 39 empirical studies that were published between 2010 and 2023. The studies that were chosen are classified based on the artificial intelligence business technique, empirical research design, and SLR search protocol criteria. According to the findings, machine learning and artificial intelligence were reported as popular methods used for business process modelling in 19% of the studies. Healthcare was the most experimented business domain used for empirical evaluation in 28% of the primary research. The most common reason for using artificial intelligence in businesses was to improve business intelligence. 51% of main studies claimed to have been carried out as experiments. 53% of the research followed experimental guidelines and were repeatable. For the design of business process modelling, eighteen AI mythology were discovered, as well as seven types of AI modelling goals and principles for organisations. For AI-enabled business models, safety, security, and privacy are key concerns in society. The growth of AI is influencing novel forms of business.

Multi-objective structural optimization of spatial steel frames with column orientation and bracing system as design variables

  • Claudio H. B. de Resende;Luiz F. Martha;Afonso C. C. Lemonge;Patricia H. Hallak;Jose P. G. Carvalho;Julia C. Motta
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.327-351
    • /
    • 2023
  • This article explores how multi-objective optimization techniques can be used to design cost-effective and structurally optimal spatial steel structures, highlighting that optimizing performance can be as important as minimizing costs in real-world engineering problems. The study includes the minimization of maximum horizontal displacement, the maximization of the first natural frequency of vibration, the maximization of the critical load factor concerning the first global buckling mode of the structure, and weight minimization as the objectives. Additionally, it outlines a systematic approach to selecting the best design by employing four different evolutionary algorithms based on differential evolution and a multi-criteria decision-making methodology. The paper's contribution lies in its comprehensive consideration of multiple conflicting objectives and its novel approach to simultaneous consideration of bracing system, column orientation, and commercial profiles as design variables.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

Real-time online damage localisation using vibration measurements of structures under variable environmental conditions

  • K. Lakshmi
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.227-241
    • /
    • 2024
  • Safety and structural integrity of civil structures, like bridges and buildings, can be substantially enhanced by employing appropriate structural health monitoring (SHM) techniques for timely diagnosis of incipient damages. The information gathered from health monitoring of important infrastructure helps in making informed decisions on their maintenance. This ensures smooth, uninterrupted operation of the civil infrastructure and also cuts down the overall maintenance cost. With an early warning system, SHM can protect human life during major structural failures. A real-time online damage localization technique is proposed using only the vibration measurements in this paper. The concept of the 'Degree of Scatter' (DoS) of the vibration measurements is used to generate a spatial profile, and fractal dimension theory is used for damage detection and localization in the proposed two-phase algorithm. Further, it ensures robustness against environmental and operational variability (EoV). The proposed method works only with output-only responses and does not require correlated finite element models. Investigations are carried out to test the presented algorithm, using the synthetic data generated from a simply supported beam, a 25-storey shear building model, and also experimental data obtained from the lab-level experiments on a steel I-beam and a ten-storey framed structure. The investigations suggest that the proposed damage localization algorithm is capable of isolating the influence of the confounding factors associated with EoV while detecting and localizing damage even with noisy measurements.

A Study on the Development of Reference Criteria for Airport Selection in the Establishment of the Gadeok New Airport Corporation using Delphi Techniques (델파이기법을 이용한 가덕신공항 운영당국 설립시 참조공항 선정기준 도출에 관한 연구)

  • Kwangil Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • It is anticipated that Gadeok New Airport will be constructed, and the entity responsible for its operation will be a new airport authority, not the existing airport corporation, as the Ministry of Land, Infrastructure and Transport has announced its plan to establish the Gadeok New Airport Construction Authority. Based on the precedents of existing airport corporations, it is expected that the future authority will undergo organizational changes to become an airport corporation. This study seeks to establish criteria for selecting overseas airports for benchmarking when researching the entity that will operate the newly established Gadeok New Airport authority. To provide a specific basis for selecting overseas airports for the future operation of Gadeok Airport, the Delphi survey method will be used to derive criteria. Currently, when examining the participation of local governments in regional airports, Gimhae International Airport is operated solely by the Korea Airports Corporation, receiving criticism for the lack of participation by the local government, such as Busan City, in decision-making related to airport operation and local reinvestment. Therefore, it is deemed necessary to provide early direction for improvement in this regard.

Crack Propagation Analysis Using the Concept of an Equivalent Plastic Hinged Length (등가소성힌지개념을 이용한 지하구조물 균열진전해석)

  • Park, Si-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.115-124
    • /
    • 2009
  • In this study, a numerical analysis technique was newly developed to evaluate the damage propagation characteristics of concrete structures. To do this, numerical techniques are incorporated for the concrete members up to the compressive damage due to the bending compressive forces after the tensile crack based on the deformation mechanism. Especially, for the compressive damage stage after the tensile crack, the crack propagation process will be analyzed numerically using the concept of an equivalent plastic hinged length. Using this concept, it can be established that section forces, such as axial forces and the moment cracks takes place, can be related to the width of the crack making it possible to analyze the crack extension.

Ultrasound Imaging in Active Surveillance of Small, Low-Risk Papillary Thyroid Cancer

  • Sangeet Ghai;David P Goldstein;Anna M Sawka
    • Korean Journal of Radiology
    • /
    • v.25 no.8
    • /
    • pp.749-755
    • /
    • 2024
  • The recent surge in the incidence of small papillary thyroid cancers (PTCs) has been linked to the widespread use of ultrasonography, thereby prompting concerns regarding overdiagnosis. Active surveillance (AS) has emerged as a less invasive alternative management strategy for low-risk PTCs, especially for PTCs measuring ≤1 cm in maximal diameter. Recent studies report low disease progression rates of low-risk PTCs ≤1 cm under AS. Ongoing research is currently exploring the feasibility of AS for larger PTCs (<20 mm). AS protocols include meticulous ultrasound assessment, emphasis on standardized techniques, and a multidisciplinary approach; they involve monitoring the nodules for size, growth, potential extrathyroidal extension, proximity to the trachea and recurrent laryngeal nerve, and potential cervical nodal metastases. The criteria for progression, often defined as an increase in the maximum diameter of the PTC, warrant a review of precision and ongoing examinations. Challenges exist regarding the reliability of volume measurements for defining PTC disease progression. Although ultrasonography plays a pivotal role, challenges in assessing progression and minor extrathyroidal extension underscore the importance of a multidisciplinary approach in disease management. This comprehensive overview highlights the evolving landscape of AS for PTCs, emphasizing the need for standardized protocols, meticulous assessments, and ongoing research to inform decision-making.