This study was conducted to investigate effective ways to meet social and cultural interest in and needs of gardens and gardening. A total of 191 respondents who answered they were living in Gyeongnam region in the questionnaire were selected: 102 (53.4%) were males and 89 (46.6%) were females. In frequency of garden visits, 45% of the respondents answered they visited gardens once a year. Their preferred companion was family (43.6%), followed by friends/colleagues (24.3%). Their important motives of garden visits included admiration of gardens' scenery and ambience, pleasure in being outdoors, relaxing mentally and physically, and appreciation of plants. Relatively less important motives included understanding or educating about nature and environmental conservation, and interest in garden design and horticulture techniques. In the overall assessment of gardens and gardening, the quality of the establishment, management and operation of botanic gardens and arboreta in Gyeongnam region scored 3.32 scale, which was close to the level of 'fair.' Also, the respondents agreed at 3.91 scale that it was necessary to improve the garden creation, gardening, and garden culture. Meanwhile, many people in Gyeongnam region did not clearly understand differences between garden and public park, also had a very obscure perception of public garden. The results of importance-performance analysis (IPA) indicated that it is necessary to concentrate on directing and developing some programs such as admiration of beautiful and exotic plants, and education on garden culture including garden making and horticultural techniques.
International conference on construction engineering and project management
/
2022.06a
/
pp.912-919
/
2022
The study is an image-based assessment that uses image processing techniques to determine the condition of concrete with surface cracks. The preparations of the dataset include resizing and image filtering to ensure statistical homogeneity and noise reduction. The image dataset is then segmented, making it more suited for extracting important features and easier to evaluate. The image is transformed into grayscale which removes the hue and saturation but retains the luminance. To create a clean edge map, the edge detection process is utilized to extract the major edge features of the image. The Otsu method is used to minimize intraclass variation between black and white pixels. Additionally, the median filter was employed to reduce noise while keeping the borders of the image. Image processing techniques are used to enhance the significant features of the concrete image, especially the defects. In this study, the tonal zones of the histogram and its properties are used to analyze the condition of the concrete. By examining the histogram, the viewer will be able to determine the information on the image through the number of pixels associated and each tonal characteristic on a graph. The features of the five tonal zones of the histogram which implies the qualities of the concrete image may be evaluated based on the quality of the contrast, brightness, highlights, shadow spikes, or the condition of the shadow region that corresponds to the foreground.
International Journal of Computer Science & Network Security
/
v.23
no.10
/
pp.89-96
/
2023
Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.
Bitcoin (BTC) is a type of cryptocurrency that supports transaction/payment of virtual money between BTC users without the presence of a central authority or any third party like bank. It uses some cryptographic techniques namely public- and private-keys, digital signature and cryptographic-hash functions, and they are used for making secure transactions and maintaining distributed public ledger called blockchain. In BTC system, each transaction signed by sender is broadcasted over the P2P (Peer-to-Peer) Bitcoin network and a set of such transactions collected over a period is hashed together with the previous block/other values to form a block known as candidate block, where the first block known as genesis-block was created independently. Before a candidate block to be the part of existing blockchain (chaining of blocks), a computation-intensive hard problem needs to be solved. A number of miners try to solve it and a winner earns some BTCs as inspiration. The miners have high computing and hardware resources, and they play key roles in BTC for blockchain formation. This paper mainly analyses the underlying cryptographic techniques, identifies some weaknesses and proposes their enhancements. For these, two modifications of BTC are suggested ― (i) All BTC users must use digital certificates for their authentication and (ii) Winning miner must give signature on the compressed data of a block for authentication of public blocks/blockchain.
Journal of the Korea Institute of Military Science and Technology
/
v.27
no.2
/
pp.189-196
/
2024
Classification of drones and birds is challenging due to diverse flight patterns and limited data availability. Previous research has focused on identifying the flight patterns of unmanned aerial vehicles by emphasizing dynamic features such as speed and heading. However, this approach tends to neglect crucial spatial information, making accurate discrimination of unmanned aerial vehicle characteristics challenging. Furthermore, training methods for situations with imbalanced data among classes have not been proposed by traditional machine learning techniques. In this paper, we propose a data processing method that preserves angle information while maintaining positional details, enabling the deep learning model to better comprehend positional information of drones. Additionally, we introduce a training technique to address the issue of data imbalance.
International Journal of Computer Science & Network Security
/
v.24
no.7
/
pp.11-23
/
2024
Triage is a practice of accurately prioritizing patients in emergency department (ED) based on their medical condition to provide them with proper treatment service. The variation in triage assessment among medical staff can cause mis-triage which affect the patients negatively. Developing ED triage system based on machine learning (ML) techniques can lead to accurate and efficient triage outcomes. This study aspires to develop a triage system using machine learning techniques to predict ED triage levels using patients' information. We conducted a retrospective study using Security Forces Hospital ED data, from 2021 through 2023 during Hajj period in Saudia Arabi. Using demographics, vital signs, and chief complaints as predictors, two machine learning models were investigated, naming gradient boosted decision tree (XGB) and deep neural network (DNN). The models were trained to predict ED triage levels and their predictive performance was evaluated using area under the receiver operating characteristic curve (AUC) and confusion matrix. A total of 11,584 ED visits were collected and used in this study. XGB and DNN models exhibit high abilities in the predicting performance with AUC-ROC scores 0.85 and 0.82, respectively. Compared to the traditional approach, our proposed system demonstrated better performance and can be implemented in real-world clinical settings. Utilizing ML applications can power the triage decision-making, clinical care, and resource utilization.
This study was examined interpretation of making techniques and provenance interpretation of raw materials for the potteries from the Nongseori site in Giheung based on archaeometric characteristics. The potteries are classified into three groups according to the archaeological age. The texture of Neolithic age potteries is sandy soil added a lot of temper such as talc and mica, and Bronze age potteries contain sandy materials which occur naturally include quartz, orthoclase, plagioclase and mica. On the other hand, Proto-three Kingdom Age potteries made of silty soil that sift out coarse minerals from the clay. But all pottery and soil samples in the study were very similar patterns with geochemical evolution trend. This result is sufficient evidence that all pottery samples were produced using the same raw materials from the host rocks around of the site area. The Neolithic age potteries had loose texture and fired probably about 700 to $760^{\circ}C$. The Bronze age potteries had experienced firing about 850 to $900^{\circ}C$. And Proto-three Kingdom Age potteries had compact textured and fired from 900 to $1,050^{\circ}C$. The making techniques of potteries are not represented discontinuation characteristics about the periodic time sequences, and are suggested that revealed a transitional change patterns for production techniques.
Active sonar transmits sound waves to detect covertly maneuvering underwater objects and detects the signals reflected back from the target. However, in addition to the target's echo, the active sonar's received signal is mixed with seafloor, sea surface reverberation, biological noise, and other noise, making target recognition difficult. Conventional techniques for detecting signals above a threshold not only cause false detections or miss targets depending on the set threshold, but also have the problem of having to set an appropriate threshold for various underwater environments. To overcome this, research has been conducted on automatic calculation of threshold values through techniques such as Constant False Alarm Rate (CFAR) and application of advanced tracking filters and association techniques, but there are limitations in environments where a significant number of detections occur. As deep learning technology has recently developed, efforts have been made to apply it in the field of underwater target detection, but it is very difficult to acquire active sonar data for discriminator learning, so not only is the data rare, but there are only a very small number of targets and a relatively large number of non-targets. There are difficulties due to the imbalance of data. In this paper, the image of the energy distribution of the detection signal is used, and a classifier is learned in a way that takes into account the imbalance of the data to distinguish between targets and non-targets and added to the existing technique. Through the proposed technique, target misclassification was minimized and non-targets were eliminated, making target recognition easier for active sonar operators. And the effectiveness of the proposed technique was verified through sea experiment data obtained in the East Sea.
An efficient retrieval of useful information is a prerequisite of an optimal decision making system. Hence, A research of data mining techniques finding useful patterns from the various forms of data has been progressed with the increase of the application of Big Data for convergence and integration with other industries. Each technique is more likely to have its drawback so that the generalization of retrieving useful information is weak. Another integrated technique is essential for retrieving useful information. In this paper, a uncertainty measure of information is calculated such that algebraic probability is measured by Bayesian theory and then information entropy of the probability is measured. The proposed measure generates the effective reduct set (i.e., reduced set of necessary attributes) and formulating the core of the attribute set. Hence, the optimal decision rules are induced. Through simulation deciding contact lenses, the proposed approach is compared with the equivalence and value-reduct theories. As the result, the proposed is more general than the previous theories in useful decision-making.
The use of bark cloth, made of the inner bark of certain trees, was widespread along tropical zones from the Africa to the Hawaii encompassing the globe. They include Malaysia, Indonesia, New Guinea, Polynesian Islands and South America. Among them the Hawaiian bark cloth, named Kapa(pronounced as tapa) was rated as the best quality and most admired. It has variety in designs and colors as well as the most sophistcated production methods. The distinct processes of kapa making are composed of two stages. The first is called first beating and it is a preparatory stage to beat the sea-water soaked bast. It was done with a round beater on a stone anvil. The second beating process was carried out with the squared beater and wooden anvil. The strips from the first beating was soaked again in the water and then beaten lightly to break up fibers. The craftmen laid a bundle of strips over the anvil and beat it into pieces of kapa. The second beater of Hawaii was the most characteristic one among bark cloth producing countries. On their surfaces were the engraved patterns, which were creation of theirs. These distinguished designs enabled them to produce the kapa with the thinner and finer texture and an elaboration of impressed designs known as "watermaks". The Hawaiian culture was self-sufficient one : Everything they used was of their own creation until 19th century. Among their inventions of printing designs on kapa are three most important and distinguished processes. They are the overlaying, the cord snapping and the block printing techniques. Their inventiveness as well as self sufficient environment made it possible to develop their fine art of the kapa making. It is said that the mass producing and cheap western technology of loom forced them to gradually abandon their traditional art and as a result this fine and valuable legacy of Hawaiian traditional kapa making technique is all but disappeared. However it is encouraging and heart warming to find that some of the people as well as specialized researchers pined together to form a group to try to reproduce the old kapa and study the traditional art. They consider the kapa as an expression of the ethnic identity with Hawaii's heritage as well as valuable art of human history.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.