We are fusing to the profiling techniques in education and making to a smart teaching plan production systems. Therefore, we investigated based on technical elements necessary for the proper look for profiling techniques, trends in the technology and product trends. We proposed that is smart teaching plan production system such as the smart teaching plan production and editing technique, the management technique for the smart teaching plan, and works for relation skill to smart teaching plan production systems. If you using the techniques that we were proposed to build effective smart teaching plan production system, management system for contents control, virtual classroom then they can management their's class and class teaching plan production, file management to teaching group easy. and those students can easy understand in their class too easy.
Indonesia is more prone to natural disasters due to its geological condition under the three main plates, making Indonesia experience frequent seismic activity, causing earthquakes, volcanic eruption, and tsunami. Those disasters could lead to other disasters such as landslides, floods, land subsidence, and coastal inundation. Monitoring those disasters could be essential to predict and prevent damage to the environment. We reviewed the application of remote sensing and Geographic Information System (GIS) for detecting natural disasters in the case of Indonesia, based on 43 articles. The remote sensing and GIS method will be focused on InSAR techniques, image classification, and susceptibility mapping. InSAR method has been used to monitor natural disasters affecting the deformation of the earth's surface in Indonesia, such as earthquakes, volcanic activity, and land subsidence. Monitoring landslides in Indonesia using InSAR techniques has not been found in many studies; hence it is crucial to monitor the unstable slope that leads to a landslide. Image classification techniques have been used to monitor pre-and post-natural disasters in Indonesia, such as earthquakes, tsunami, forest fires, and volcano eruptions. It has a lack of studies about the classification of flood damage in Indonesia. However, flood mapping was found in susceptibility maps, as many studies about the landslide susceptibility map in Indonesia have been conducted. However, a land subsidence susceptibility map was the one subject to be studied more to decrease land subsidence damage, considering many reported cases found about land subsidence frequently occur in several cities in Indonesia.
Experimenting with concrete to determine its compressive and tensile strengths is a laborious and time-consuming operation that requires a lot of attention to detail. Researchers from all around the world have spent the better part of the last several decades attempting to use machine learning algorithms to make accurate predictions about the technical qualities of various kinds of concrete. The research that is currently available on estimating the strength of concrete draws attention to the applicability and precision of the various machine learning techniques. This article provides a summary of the research that has previously been conducted on estimating the strength of concrete by making use of a variety of different machine learning methods. In this work, a classification of the existing body of research literature is presented, with the classification being based on the machine learning technique used by the researchers. The present review work will open the horizon for the researchers working on the machine learning based prediction of the compressive strength of concrete by providing the recommendations and benefits and drawbacks associated with each model as determining the compressive strength of concrete practically is a laborious and time-consuming task.
It has been pointed out as a limitation that the rank of some efficient DMUs(decision making units) cannot be discriminated due to the relativity nature of efficiency measured by DEA(data envelopment analysis), comparing the production structure. Recently, to solve this problem, a DEA-SNA(social network analysis) model that combines SNA techniques with data envelopment analysis has been studied intensively. Several models have been proposed using techniques such as eigenvector centrality, pagerank centrality, and hypertext induced topic selection(HITS) algorithm, but DMUs that cannot be ranked still remain. Moreover, in the process of extracting latent information within the DMU group to build effective network, a problem that violates the basic assumptions of the DEA also arises. This study is meaningful in finding the cause of the limitations by comparing and analyzing the characteristics of the DEA-SNA model proposed so far, and based on this, suggesting the direction and possibility to develop more advanced model. Through the results of this study, it will be enable to further expand the field of research related to DEA.
This study was designed to : (a) analyze the menus of the French restaurant in tourism hotel using the menu analysis techniques of Kasavana & Smith and Pavesic, (b) compare the characteristics of the two analysis techniques. The calculations for the menu analysis were done using the MS 2000 Excel spreadsheet program. The menu mix % and unit contribution margin were used as variables by Kasavana & Smith and weighted contribution margins (WCM) and potential food cost % (PFC%) by Pavesic. In two cases, a four-cell matrix was created and menu items were located in each according they achieved high or low scores with respect to two variables. The items that scored favorably on both variables were rated in the top category (e.g., star, prime) and those that scored below average on both were rated in the lowest category (e.g., dog, problem). While Kasavana & Smith's method focused on customer's viewpoints, Pavesic's method considered the manager's viewpoints. Therefore, it is more likely to be desirable for decision-making on menus if the menu analysis techniques chosen is suited to its purpose.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.149-149
/
2022
Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.
Journal of Information Science Theory and Practice
/
v.12
no.1
/
pp.39-59
/
2024
An online social network is a platform that is continuously expanding, which enables groups of people to share their views and communicate with one another using the Internet. The social relations among members of the public are significantly improved because of this gesture. Despite these advantages and opportunities, criminals are continuing to broaden their attempts to exploit people by making use of techniques and approaches designed to undermine and exploit their victims for criminal activities. The field of digital forensics, on the other hand, has made significant progress in reducing the impact of this risk. Even though most of these digital forensic investigation techniques are carried out manually, most of these methods are not usually appropriate for use with online social networks due to their complexity, growth in data volumes, and technical issues that are present in these environments. In both civil and criminal cases, including sexual harassment, intellectual property theft, cyberstalking, online terrorism, and cyberbullying, forensic investigations on social media platforms have become more crucial. This study explores the use of machine learning techniques for addressing criminal incidents on social media platforms, particularly during forensic investigations. In addition, it outlines some of the difficulties encountered by forensic investigators while investigating crimes on social networking sites.
Protein glycosylation, a highly significant and ubiquitous post-translational modification (PTM) in eukaryotic cells, has attracted considerable research interest due to its pivotal role in a wide array of essential biological processes. Conducting a comprehensive analysis of glycoproteins is imperative for understanding glycoprotein bio-functions and identifying glycosylated biomarkers. However, the complexity and heterogeneity of glycan structures, coupled with the low abundance and poor ionization efficiencies of glycopeptides have all contributed to making the analysis and subsequent identification of glycans and glycopeptides much more challenging than any other biopolymers. Nevertheless, the significant advancements in enrichment techniques, chromatographic separation, and mass spectrometric methodologies represent promising avenues for mitigating these challenges. Numerous substrates and multifunctional materials are being designed for glycopeptide enrichment, proving valuable in glycomics and glycoproteomics. Mass spectrometry (MS) is pivotal for probing protein glycosylation, offering sensitivity and structural insight into glycopeptides and glycans. Additionally, enhanced MS-based glycopeptide characterization employs various separation techniques like liquid chromatography, capillary electrophoresis, and ion mobility. In this review, we highlight recent advances in enrichment methods and MS-based separation techniques for analyzing different types of protein glycosylation. This review also discusses various approaches employed for glycan release that facilitate the investigation of the glycosylation sites of the identified glycoproteins. Furthermore, numerous bioinformatics tools aiding in accurately characterizing glycan and glycopeptides are covered.
Purpose This study aims to analyze the relationship between consumption patterns and default risk among financially vulnerable households in a rapidly changing economic environment. Financially vulnerable households are more susceptible to economic shocks, and their consumption patterns can significantly contribute to an increased risk of default. Therefore, this study seeks to provide a systematic approach to predict and manage these risks in advance. Design/methodology/approach The study utilizes data from the Korea Welfare Panel Study (KOWEPS) to analyze the consumption patterns and default status of financially vulnerable households. To address the issue of data imbalance, sampling techniques such as SMOTE, SMOTE-ENN, and SMOTE-Tomek Links were applied. Various machine learning algorithms, including Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM), were employed to develop the prediction model. The performance of the models was evaluated using Confusion Matrix and F1-score. Findings The findings reveal that when using the original imbalanced data, the prediction performance for the minority class (default) was poor. However, after applying imbalance handling techniques such as SMOTE, the predictive performance for the minority class improved significantly. In particular, the Random Forest model, when combined with the SMOTE-Tomek Links technique, showed the highest predictive performance, making it the most suitable model for default prediction. These results suggest that effectively addressing data imbalance is crucial in developing accurate default prediction models, and the appropriate use of sampling techniques can greatly enhance predictive performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.