• Title/Summary/Keyword: maize embryo

Search Result 19, Processing Time 0.032 seconds

Production of Transgenic Maize (Zea mays L.) Using Agrobacterium tumefaciens-Mediated Transformation (Agrobacterium tumefaciens 공동배양법을 이용한 옥수수 형질전환체 생산)

  • Cho Mi-Ae;Park Yun-Ok;Kim Jin-Suck;Park Ki-Jin;Min Hwang-Ki;Liu Jang-Ryol;Clemente Tom;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated immature embryo transformation was used to produce transgenic maize. Immature embryo of Hi II genotype were co-cultivated with strains Agrobacterium tumefaciens (C58C1) containing the binary vectors (pPTN290) carrying with Ubiquitin promoter-GUS gene as reporter gene and NOS promoter-nptll gene conferring resistance to paromomycin as selective agent. Seven embryogenic callus lines transformed showed the resistance in paromomycin antibiotics. Histochemical GUS assay showed that 7 individual lines transformed with the GUS gene were positive response among the transformants. Southern blot analysis revealed that the nptll gene segregated and expressed in their progeny.

Ear and Kernel Characteristics of Korean Indigenous Maize Lines Collected in Pusan and Kyungnam (부산, 경남지역에서 수집된 한국 재래종 옥수수의 이삭 및 낟알의 특성)

  • 이인섭;박종옥
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.159-165
    • /
    • 2001
  • In order to reserve abundant germplasm for breeding new corn varieties, major characteristics of ears and kernels were evaluated with a total of 210 Korean indigenous maize lines collected from various parts of Pusan City and Kynugnam Province, Korea The average ear length and ear diameter of indigenous maize lines collected was 12.52cm and 3.33 cm, respectively. The average ear weight of the maize lines was 63.70g. The ears collected from the north-west mountainous region were the heaviest, and The ears from the south coastal region were the lightest. The average kernel weight per ear was 50.54g, and the kernel weight per ear by region showed a tendency similar to the ear weight. The kernels of maize lines collected in the north-west mountainous region were the longest, and kernel width and thickness were the largest in the west plain region. 100 kernel weight and embryo weight the largest in the lines collected in the north-west mountainous region. The degree of pericarp thickness was the smallest in the lines collected in the south coastal region, and largest in the lines collected in the west plain region. Except for the correlation coefficient width and 100 kernel weight, all correlation coefficients between the characteristics of the lines showed highly significant differences.

  • PDF

Characterization of Carotenoid Biosynthetic Pathway Using Viviparous Mutant Embryos in Maize ( Zea mays L. )

  • Lee, Byung-Moo
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 1998
  • Carotenoid compounds in embryos of wild-type(WT) and viviparous mutants of maize(Zea mays L.) were analyzed using high performance liquid ehromatography (HPLC) with a photodiode array detector. Zeaxanthin accumulates in WT embryos as the major carotenoid. Phytoene accumulates in vp2 and vp5. Phytofluene in w3 and ${\xi}$-carotene in the vp9 mutant embryos. This indicates that the vp2 and vp5 mutants impair phytoene desaturase from 15-cis-phytoene to 15-cis-phytofluene. The w3 mutant has neither an isomerase from 15-cis-phytofluene to all-trans-phytofuene nor phytofluene desaturase from phytofluene to ${\xi}$-carotene. The vp9 mutant does not have the ${\xi}$-carotene desaturase from ${\xi}$-carotene to lycopene. Our analysis shows that the terminal carotenoid. ${\gamma}$-carotene(${\beta},{\Psi}$-carotene), accumulates in the vp7 mutant embryos. The ${\varepsilon}$-carotene(${\varepsilon},{\varepsilon}$-carotene), a product of ${\delta}$-carotene(${\varepsilon},{\Psi}$-carotene) in some plants, however, has not been found in maize embryos. The vp7 mutant impairs a cyclization step from ${\gamma}$-carotene to both ${\beta}$-carotene and ${\alpha}$-carotene. We suggest that monocyclic ${\gamma}$-carotene is the sole precursor of both bicyclic ${\beta}$-carotene(${\beta},{\beta}$-carotene) and ${\alpha}$-carotene(${\beta},{\varepsilon}$-carotene) in maize.

  • PDF

A low-pressure gene gun for genetic transformation of maize (Zea mays L.)

  • Kao, Chien-Yuan;Huang, Shin-Hui;Lin, Chiu-Mei
    • Plant Biotechnology Reports
    • /
    • v.2 no.4
    • /
    • pp.267-270
    • /
    • 2008
  • We have successfully used the low-pressure BioWare gene gun, developed for gene transfer in animal cells, for plant tissues. The BioWare device is easy to manipulate. Just 50 psi helium pressure was sufficient to transfer foreign genes into the aleurone layer and embryo of maize without causing tissue damage in the impact area. As shown by expression signals from invasive histochemical ${\beta}-glucuronidase$ (GUS) activity, the foreign reporter gene expressed well in bombarded tissues. This successful GUS-transient expression extends the application of this low-pressure gene gun from animal cells to plant tissues.

Expression of Dengue virus EIII domain-coding gene in maize as an edible vaccine candidate

  • Kim, Hyun A;Kwon, Suk Yoon;Yang, Moon Sik;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.50-55
    • /
    • 2014
  • Plant-based vaccines possess some advantages over other types of vaccine biotechnology such as safety, low cost of mass vaccination programs, and wider use of vaccines for medicine. This study was undertaken to develop the transgenic maize as edible vaccine candidates for humans. The immature embryos of HiII genotype were inoculated with A. tumefaciens strain C58C1 containing the binary vectors (V662 or V663). The vectors carrying nptII gene as selection marker and scEDIII (V662) or wCTB-scEDIII (V663) target gene, which code EIII proteins inhibite viral adsorption by cells. In total, 721 maize immature embryos were transformed and twenty-two putative transgenic plants were regenerated after 12 weeks selection regime. Of them, two- and six-plants were proved to be integrated with scEDIII and wCTB-scEDIII genes, respectively, by Southern blot analysis. However, only one plant (V662-29-3864) can express the gene of interest confirmed by Northern blot analysis. These results demonstrated that this plant could be used as a candidated source of the vaccine production.

Yellowish Friable Embryogenic Callus (YFEC) Production and Plant Regeneration from Immature Embryo Cultures of Domestic Maize Cultivars and Genotypes (Zea may L.) (국내 옥수수 품종 및 계통의 미숙배 배양으로부터 Yellowish Friable Embryogenic 캘러스 (YFEC) 생산과 식물체 재생)

  • Cho Mi-Ae;Park Yun-Ok;Kim Jin-Suck;Park Ki-Jin;Min Hwang-Ki;Liu Jang-Ryol;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.117-121
    • /
    • 2005
  • Immature embryos of 3 cultivars (Du Me Chal, Mi Baek Chal, Heug Jeom Chal) and 5 genotypes (HW1, KL103, HW3, HW4, KW7) were cultured on medium containing MS salts, Eriksson's vitamins, 1 mg/L 2,4-dichlorophenoxyacetic acid, 25 mM proline, 100 mg/L casamino acid, 3 mM MES, 1.7 mg/L $AgNO_3$ and 20 g/L sucrose (SIM). Frequency of somatic embryo formation on explant of immature embryos showed in HW1 (45.20%), KL103 (5.75%), HW3 (37.20%), HW4 (30.10%), KW70 (55.20%), Mi Baek Chal (18.74%), Heug Jeom Chal (22.41%), Du Me Chal (36.72%) and Hi II type (<10%), respectively. Yellowish friable embryogenic callus (YFEC) such as type II callus of Hi II genotype only produced from the HW3 and Heug Jeom Chal, whereas other cultivars and genotypes were directly formed somatic embryos with late-embryonic stages or expanded yellowish compact somatic embryo with morphological abnormality. The yellowish friable embryogenic callus (YFEC) could be proliferated on the same medium, which were maintained embryogenic capacity for 6 months over. Upon transfer to first regeneration and second regeneration medium, somatic embryos converted to plantlets at a frequency of approximately 100%. However, the expanded somatic embryos with abnormal morphology were slowly proliferated when subcultured on the same medium, and some of them were degenerated or converted to plantlets at a frequency of approximately 25%. Accordingly, The Heug Jeom Chal and HW3 genotype will be further used for development of high frequency transformation system in domestic maize germplasm.

Effects of Gibbrellic Acid and Benzyl Adenine on Seed Germination and the Chemical Change of Maize(Zea mays) Endosperm (GA와 BA 처리농도(處理濃度)가 옥수수(Zea mays)의 발아(發芽)와 배유(胚乳)의 양분소장(養分消長)에 미치는 영향(影響))

  • Kim, Jong Jin;Lee, Young Chan;Kim, Jeung Yeun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.8
    • /
    • pp.1-8
    • /
    • 1990
  • The experiment was conducted to study on the germination of seeds, and chemical change in the endorsperm and embryo of maize seeds treated with gibbrellic acid(GA) 25, G A 50, bengyl adenine(BA) 100 and B A 200 ppm. Obtained results can be summerized as follows: 1. The germination rate in the initial stage of maize seed increased most with G A 25 ppm treated but decreased most with B A 200 ppm treatment amount other treated blocks. There is no significant difference between treatments in the middle and later stage of the seed germination. 2. The quantity of Q $CO_2$ was noticeably increased together in parallel with germination at each blocks, but such fact was found that the block of treatment has low Q $CO_2$ in comparison with control and in particular, has the tendency to take very low in B A 200 ppm. 3. The amount of reducing sugar and total sugars among embryo and endosperm are promptly increased at each blocks, but B A treatment shows low rate of increase in comparison with the non treatment and G A treatment. 4. The quantity of crude protein of seed during germination are increased at the part of embryo and decreased at the part of endosperm. Such degree is most prominent in the treatment with G A 25 ppm and changing degree of treatment with 200 ppm is lowest.

  • PDF

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.97-97
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF