• Title/Summary/Keyword: main-memory database

Search Result 120, Processing Time 0.031 seconds

The Study on Real-time LDAP Interface in used Main Memory Resident Database System (주기억장치 상주형 DBMS을 위한 실시간 LDAP Interface에 관한 연구)

  • Lee Jeong-Bae;Cha Sang-Gyun;Kim Hwan-Chul;Park Byung-Kwan
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.475-482
    • /
    • 2004
  • We live in the flood of information due to advancement of information communication and increase of E-mail. Managing users huge in-formation systematically and speedy searching are needed in these social advancement. In this thesis, in order to satisfy these requirement, We suggested Real-time LDAP Interface using Main Memory Resident Database Management System which can manage a lot of information fast systematically. It is expected that system can provide advantage of performance improvement through replacing Main Memory Resident Database Management System without change of application which is required high speed process.

Design and Implementation of Real-Time Static Locking Protocol for Main-memory Database Systems (주기억장치 데이타베이스 시스템을 위한 실시간 정적 로킹 기법의 설계 및 구현)

  • Kim, Young-Chul;You, Han-Yang;Kim, Jin-Ho;Kim, June;Seo, Sang-Ku
    • Journal of KIISE:Databases
    • /
    • v.29 no.6
    • /
    • pp.464-476
    • /
    • 2002
  • Main-memory database systems which reside entire databases in main memory are suitable for high-performance real-time transaction processing. If two-phase locking(2PL) as concurrency control protocol is used for the transactions accessing main-memory databases, however, the possibility of lock conflict will be low but lock operations become relatively big overhead in total transaction processing time. In this paper, We designed a real-time static locking(RT-SL) protocol which minimizes lock operation overhead and reflects the priority of transactions and we implemented it on a main-memory real-time database system, Mr.RT. We also evaluate and compare its performance with the existing real-time locking protocols based on 2PL such as 2PL-PI and 2PL-HP. The extensive experiments reveal that our RT-SL outperforms the existing ones in most cases.

Design of Main-Memory Database Prototype System using Fuzzy Checkpoint Technique in Real-Time Environment (실시간 시스템에서 퍼지 검사점을 이용한 주기억 데이터베이스 프로토타입 시스템의설계)

  • Park, Yong-Mun;Lee, Chan-Seop;Choe, Ui-In
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1753-1765
    • /
    • 2000
  • As the areas of computer application are expanded, real-time application environments that must process as many transactions as possible within their deadlines, such as a stock transaction systems, ATM switching systems etc, have been increased recently. The reason why the conventional database systems can't process soft real-time applications is the lack of prediction and poor performance on processing transaction's deadline. If transactions want to access data stored at the secondary storage, they can not satisfy requirements of real-time applications because of the disk delay time. This paper designs a main-memory database prototype systems to be suitable to real-time applications and then this system can produce rapid results without disk i/o as all of the information are loaded in main memory database. In thesis proposed the improved techniques with respect to logging, checkpointing, and recovering in our environment. In order to improve the performance of the system, a) the frequency of log analysis and redo processing is reduced by the proposed redo technique at system failure, b) database consistency is maintained by improved fuzzy checkpointing. The performance model is proposed which consists of two parts. The first part evaluates log processing time for recovery and compares with other research activities. The second part examines checkpointing behavior.

  • PDF

Design and Implementation of a Query Processor for Real-Time Main Memory Database Systems (실시간 주기억장치 데이타베이스 시스템을 위한 질의 처리기의 설계 및 구현)

  • Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • In this paper, we design and implement a query processor of real-time main memory database systems, which reflect the characteristics of main memory database systems and satisfy timing constraints. The proposed query processor manages real-time data that has timing constraint by exploiting meta database. It supports CLI in order to make application programs. It also supports extended CLI and stored CLI. The former can be expressed the Information on real-time transaction. The latter is designed to support frequently processed transaction. The proposed query processor is implemented as query processor of real-time database management systems. We Present performance evaluation results that illustrate ratio of transaction, which satisfy deadline are increased by the query processing ability of system and the efficient management of real-time data.

  • PDF

Design and Implementation of a Main Memory Index based on the R-tree for Moving Object Databases (이동체 데이터베이스를 위한 R-tree 기반 메인 메모리 색인의 설계 및 구현)

  • Ahn, Sung-Woo;An, Kyoung-Hwan;Lee, Chaug-Woo;Hong, Bong-Hee
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.2 s.17
    • /
    • pp.53-73
    • /
    • 2006
  • Recently, the need for Location-Based Services (LBS) has increased due to the development of mobile devices, such as PDAs, cellular phones and GPS. As a moving object database that stores and manages the positions of moving objects is the core technology of LBS, the scheme for maintaining the main memory DBMS to the server is necessary to store and process frequent reported positions of moving objects efficiently. However, previous works on a moving object database have studied mostly a disk based moving object index that is not guaranteed to work efficiently in the main memory DBMS because these indexes did not consider characteristics of the main memory. It is necessary to study the main memory index scheme for a moving object database. In this paper, we propose the main memory index scheme based on the R-tree for storing and processing positions of moving objects efficiently in the main memory DBMS. The proposed index scheme, which uses a growing node structure, prevents the splitting cost from increasing by delaying the node splitting when a node overflows. The proposed scheme also improves the search performance by using a MergeAndSplit policy for reducing overlaps between nodes and a LargeDomainNodeSplit policy for reducing a ratio of a domain size occupied by node's MBRs. Our experiments show that the proposed index scheme outperforms the existing index scheme on the maximum 30% for range queries.

  • PDF

Design and Implementation of a Main-memory Storage System for Real-time Retrievals (실시간 검색을 위한 다중 사용자용 주기억장치 자료저장 시스템 개발)

  • Kwon, Oh-Su;Hong, Dong-Kweon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.187-194
    • /
    • 2003
  • Main Memory storage system can increase the performance of the system by assigning enough slack time to real-time transactions. Due to its high response time of main memory devices, main memory resident data management systems have been used for location management of personal mobile clients to cope with urgent location related operations. In this paper we have developed a multi-threaded main memory storage system as a core component of real-time retrieval system to handle a huge amount of readers and writers of main memory resident data. The storage system is implemented as an embedded component which is working with the help of a disk resident database system. It uses multi-threaded executions and utilizes latches for its concurrency control rather than complex locking method. It only saves most recent data on main memory and data synchronization is done only when disk resident database asks for update transactions. The system controls the number of read threads and update threads to guarantee the minimum requirements of real-time retrievals.

Recovery Methods in Main Memory DBMS

  • Kim, Jeong-Joon;Kang, Jeong-Jin;Lee, Ki-Young
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.26-29
    • /
    • 2012
  • Recently, to efficiently support the real-time requirements of RTLS( Real Time Location System) services, interest in the main memory DBMS is rising. In the main memory DBMS, because all data can be lost when the system failure happens, the recovery method is very important for the stability of the database. Especially, disk I/O in executing the log and the checkpoint becomes the bottleneck of letting down the total system performance. Therefore, it is urgently necessary to research about the recovery method to reduce disk I/O in the main memory DBMS. Therefore, In this paper, we analyzed existing log techniques and check point techniques and existing main memory DBMSs' recovery techniques for recovery techniques research for main memory DBMS.

Large-Memory Data Processing on a Remote Memory System using Commodity Hardware (대용량 메모리 데이타 처리를 위한 범용 하드웨어 기반의 원격 메모리 시스템)

  • Jung, Hyung-Soo;Han, Hyuck;Yeom, Heon-Y.
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.9
    • /
    • pp.445-458
    • /
    • 2007
  • This article presents a novel infrastructure for large-memory database processing using commodity hardware with operating system support. We exploit inexpensive PCs and a high-speed network capable of Remote Direct Memory Access (RDMA) operations to build a new memory hierarchy between fast volatile memory and slow disk storage. The new memory hierarchy guarantees a reasonable response time, and its storage size enables us to run large-memory database systems with little performance degradation. The proposed architecture has two main components: (1) a remote memory system inside the Linux kernel to manage other computers' memory pages efficiently and (2) a remote memory pager responsible for manipulating remote read/write operations on remote memory pages. We insist that the proposed architecture is practical enough to support the rigorous demands of commercial in-memory database systems by demonstrating the performance of publicly available main-memory databases (e.g., MySQL) on our prototyped system. The experimental results show very interesting results from the TPC-C benchmark.

Effective Backup and Real-Time Replication Techniques for HSS System in All-IP Mobile Networks (All-IP 이동 통신망에서 HSS 시스템의 효과적인 백업과 실시간 이중화 기법)

  • Park, Seong-Jin;Park, Hyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.795-804
    • /
    • 2009
  • An HSS(Home Subscriber Server) system requires a main-memory database on main-memory unit for the real-tine management of the subscriber information in the mobile communication service, in that the system controls not only basic data for handling calls of users, but also additional service data related to user authentication and operational data. Nonetheless, HSS-DBS system, requiring the reliability and stability, need more secure data store method and a back-up technique because the system have a long startup time and the big problem on the failures of main-memory. This paper proposes an efficient back-up replication technique, on the basis of enhancing the stability and performance of HSS system. The proposed shadowing back-up technique adopting the delayed recovery process, can help minimize the real-time back-up overloads by location registration, while the proposed backup replication method enables more stable system operations with replicating the data to remote server in real time.

Tmr-Tree : An Efficient Spatial Index Technique in Main Memory Databases (Tmr-트리 : 주기억 데이터베이스에서 효율적인 공간 색인 기법)

  • Yun Suk-Woo;Kim Kyung-Chang
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.543-552
    • /
    • 2005
  • As random access memory chip gets cheaper, it becomes affordable to realize main memory-based database systems. The disk-based spatial indexing techniques, however, cannot direct apply to main memory databases, because the main purpose of disk-based techniques is to reduce the number of disk accesses. In main memory-based indexing techniques, the node access time is much faster than that in disk-based indexing techniques, because all index nodes reside in a main memory. Unlike disk-based index techniques, main memory-based spatial indexing techniques must reduce key comparing time as well as node access time. In this paper, we propose an efficient spatial index structure for main memory-based databases, called Tmr-tree. Tmr-tree integrates the characteristics of R-tree and T-tree. Therefore, Nodes of Tmr-tree consist of several entries for data objects, main memory pointers to left and right child, and three additional fields. First is a MBR of a self node, which tightly encloses all data MBRs (Minimum Bounding Rectangles) in a current node, and second and third are MBRs of left and right sub-tree, respectively. Because Tmr-tree needs not to visit all leaf nodes, in terms of search time, proposed Tmr-tree outperforms R-tree in our experiments. As node size is increased, search time is drastically decreased followed by a gradual increase. However, in terms of insertion time, the performance of Tmr-tree was slightly lower than R-tree.