• Title/Summary/Keyword: main monomer

Search Result 58, Processing Time 0.025 seconds

A Study on the Mechanism of Photoluminescence in Poly(3-hexylthiophene) (Poly(3-hexylthiophene)의 PL 발광 메카니즘에 관한 연구)

  • 김주승;서부완;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • We studied the optical properties of poly(3-hexylthiophene) for applying to the emitting material of organic electro luminescent device. The infrared spectrum and NMR of synthesized polymer gave good evidence for the conjugation of 3-hexylthiophene monomer unit. We confirmed that poly(3-hexylthiophene) contains the HT(head-to-tail)-HT(head-to-Tail) linkage larger than 65% based on NMR analysis. FTIR and raman spectroscopy show that poly(3-hexylthiophene) has two main vibration levels which have an energy about 0.18eV and 0.36eV. Electronic absorption spectra shifted to the shorter wavelength with increasing temperature, which is related to a conformational transition of the polymer. Photoluminescence spectrum generated at low temperature(10K) is separated at 669nm, 733nm and 812nm that it's because of phonon energy generated from the lattice vibration.

  • PDF

Syntheses of Thermotropic Liquid-Crystalline Copoly (ester amide)s Containing a Decamethylene Spacer in the Main Chain and Their Properties (Decamethylene Spacer를 가지는 Thermotropic Copoly (ester amide)s의 합성과 구조해석)

  • Song, Jin-Cherl;Kim, Kyung-Hwan;Uryu, Toshiyuki
    • Textile Coloration and Finishing
    • /
    • v.3 no.1
    • /
    • pp.28-36
    • /
    • 1991
  • Thermotropic behavior was observed in a number of aromatic copoly (ester amide)s containing a flexible spacer based on 4,4'$-dicarboxyalpha,\varpi-diphenoxy$ alkanes as an A component, di-acetylated p-aminophenol as a B, di-acetylated hydroquinone as a C gave the thermotropic copoly (ester amide)s containing a flexible spacer in the polymer backbone. 4,4'-diamino-3,3'-dimethoxybiphenyl as an amino group containing monomer as a D components. In the last case, up to 60 mol% of amide group was allowed to afford thermotropic liquid-crystallinity. The polymer structure and thermotropic nature were examined by solid-state and solution $^{13}C$ NMR spectroscopy, differential scanning calorimeter, polarizing microscopy, and IR spectroscopy.

  • PDF

Novel Method for Polystyrene Reactions at Low Temperature

  • Katsuhiko Saido;Hiroyuki Taguchi;Yoichi Kodera;Yumiko Ishihara;Ryu, In-Jae;Chung, Seon-yong
    • Macromolecular Research
    • /
    • v.11 no.2
    • /
    • pp.87-91
    • /
    • 2003
  • Thermal decomposition reactions of polystyrene using a new heating medium were carried out by a batch system at 190-280 $^{\circ}C$ to clarify the manner in which decomposition is initiated. Polystyrene obtained from a commercial source and low molecular weight compounds obtained from the thermal decomposition were analyzed by GC, GPC, IR, $^{13}$ C-NMR and GC-MS. The main chain underwent virtually no change by heat application. Polystyrene underwent decomposition below its molding temperature and the major decomposition products were 2,4,6-triphenyl-1-hexene (trimer), 2,4-diphenyl-1-butene(dimer) and styrene (monomer). Ethylbenzene, propylbenzene, naphthalene, benzaldehyde, biphenyl and 1,3-diphenylpropane were detected as minor products. This paper presents a new method for examining the decomposition of polystyrene at low temperature into volatile low molecular weight compounds.

Effect of sampling volume on the breakthrough of charcoal tube during vinyl chloride monomer sampling (공기중 염화비닐단량체의 포집시 공기 포집량이 파과에 미치는 영향)

  • Yoon, Jon Jung;Lim, Nam Gu;Kim, Chi Nyun;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.241-248
    • /
    • 2001
  • The main factors of breakthrough are known to sampling time, flow rate, concentration of the sample, temperature, humidity, and the physical characteristics of the solid sorbent tube. However, no study has been reported the effect of temperature and sampling volume on the breakthrough of acharcoal tube during vinyl chloride monomer (VCM) sampling. The objective of this study is to suggest the optimal sampling condition during VCM sampling based on National Institute for Occupational Safety and Health (NIOSH) method. To evaluate adequate sampling volume for VCM without breakthrough, volume of 1, 2, 3, 4, and 5 L each from VCM of 1, 5, 10, 15, and 20ppm at flow rate of 0.05 L/min were sampled in $22^{\circ}C$ and $40^{\circ}C$. At $22^{\circ}C$, in the case of 1, 5, 10, and 15ppm, VCM was adsorbed completely in first section of charcoal tube regardless of sampling volume. But in 20ppm, detection rates are 99.56% in first section and 0.44% in second section. At $40^{\circ}C$ of 1ppm, VCM was adsorbed completely in first section. In 10, 15, and 20ppm, detection rates of second, third, and forth sections were decreased significantly by reduction of sampling volume. In determination of breakthrough based on NIOSH method, no breakthrough was occurred in 20ppm at $22^{\circ}C$. At $40^{\circ}C$, breakthrough was occurred in 10, 15, and 20ppm when sampling volume was 5L. Although no breakthrough was occurred when sampling volume was 3L. Finally, in environment of temperature around $22^{\circ}C$, breakthrough may not occurred up to 20ppm during sampling for VCM. During sampling for VCM in environment of temperature around $40^{\circ}C$, no breakthrough occurred in 1-5ppm and 10-20ppm when sampling volume is 5L and 3L respectively. This result suggests that the sampling volume should be considered when VCM sampling under hot conditions (> $22^{\circ}C$) by the NIOSH method No. 1007.

  • PDF

Preparation of MA-PLA Using Radical Initiator and Miscibility Improvement of PLA/PA11 Blends (라디칼 개시제를 이용한 MA-PLA 제조 및 바이오플라스틱 PLA/PA11 블렌드의 상용성 개선)

  • Lee, Jong-Eun;Kim, Han-Eol;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • Recently, various investigation of vegetable oil which is extracted from natural resources is being progressed because of its low cost and environmental aspect. However, double bonds in vegetable oil should be substituted to other high reactive functional group due to its low reactivity for synthesizing bio-polymeric materials. ${\alpha}$-eleostearic acid, which is consist of conjugated triene, is the main component of tung oil, and the conjugated triene allows tung oil to have higher reactivity than other vegetable oil. In this study, tung oil is copolymerized with styrene and divinylbenzene to make thermoset resin without any substitution of functional group. Thermal and mechanical properties are measured to investigate the effects of the composition of each monomer on the synthesized thermoset resin. The result shows that the products have only one Tg, which means the synthesized thermoset resins are homogeneous in molecular level. Mechanical properties show that tung oil act as soft segment in the copolymer and make more elastic product. On the other hand, divinylbenzene acts as hard segment and makes more brittle product.

Industrial Applications of Saccharification Technology for Red Seaweed Polysaccharide (산업적 응용을 위한 홍조류 당화 기술)

  • Hong, Chae-Hwan;Kim, Se Won;Kim, Yong-Woon;Park, Hyun-Dal;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.307-315
    • /
    • 2014
  • Recently seaweed polysaccharides have been extensively studied for alternative energy application. Because their producing cost is high and efficiency low, their industrial applications have been limited. The main component of cell wall of red algae represented by Gelidiales and Gracilariales is agar. Red-algae agar or galactan, consisting of D-galactose and 3, 6-anhydro-L-galactose, is suitable for bio-product application if hydrolyzed to monomer unit. For the hydrolysis of algae, chemical or enzymatic treatment can be used. A chemical process using a strong acid is simple and efficient, but it generates together with target sugar and toxic compounds. In an enzymatic hydrolysis process, target sugar without toxic compounds generation. The objective of this review is to summary the recent data of saccharification by chemical and enzymatic means from red seaweed for especially focused on automobile industry.

Grignard Metathesis Polymerization and Properties of 1,1-Disubstituted-2,5-dibromo-3,4-diphenylsiloles

  • Park, Young Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1825-1831
    • /
    • 2014
  • Grignard metathesis polymerizations of 1,1-disubstituted-2,5-dibromo-3,4-diphenylsiloles such as 1,1-dimethyl-2,5-dibromo-3,4-diphenylsilole, 1,1-diethyl-2,5-dibromo-3,4-diphenylsilole, 1,1-diisopropyl-2,5-dibromo-3,4-diphenylsilole, and 1,1-dihexyl-2,5-dibromo-3,4-diphenylsilole were performed to yield poly(1,1-disubstituted-3,4-diphenyl-2,5-silole)s containing fluorescent aromatic chromophore groups such as phenyl and silole in the polymer main chain: poly(1,1-dimethyl-3,4-diphenyl-2,5-silole), poly(1,1-diethyl-3,4-diphenyl-2,5-silole), poly(1,1-diisopropyl-3,4-diphenyl-2,5-silole), and poly(1,1-dihexyl-3,4-diphenyl-2,5-silole), respectively. The obtained materials are highly soluble in common organic solvents such as chloroform and tetrahydrofuran. Fourier-transform infrared spectra of all the polymers have characteristic C=C stretching frequencies at $1620-1628cm^{-1}$. The prepared organosilicon polymers exhibit strong absorption maximum peaks at 273-293 nm in the tetrahydrofuran solution, showing a red-shift of 18-34 nm relative to those of the monomer, strong excitation maximum peaks at 276-303 nm, and strong fluorescence emission maximum bands at 350-440 nm. Thermogravimetric analysis shows that most of the polymers are stable up to $200^{\circ}C$ with a weight loss of 6-16% in nitrogen.

Effect of Particle Size on Zirconia Gel-Casting Process

  • Kim, In-Woong;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.449-454
    • /
    • 2015
  • The fabrication process of zirconia gel-casting was studied to obtain dense zirconia on a large scale or with complicated shapes. As an experimental parameter, two different particle sizes ($0.1{\mu}m$ and $0.7{\mu}m$) of zirconia powder were applied to the gel-casting process. The viscosity behavior of slurries incorporating 40 vol% of zirconia powder was examined as a function of the dispersant content and the solid load to determine the optimum dispersion conditions. In addition, the gelation time with an initiator, the de-binding behavior, and the main factors affecting densification were examined. The densification of the gel-casted zirconia green body depended on the mixing ratio between the monomer and the dimer and on the zirconia particle size. A green body with a small particle size of $0.1{\mu}m$ showed less densification, with a relative density of 93%. This may be due to the excess number of bubbles created through interactions between the larger particle surface and polymer additives during the ball-milling process.

Synthesis and Characteristics of Blue Light Emitting Soluble PPV Copolymer (청색 발광 가용성 PPV 공중합체의 합성 및 특성)

  • 이경민;최병수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.145-151
    • /
    • 2001
  • In this study, blue light emiting, soluble PPV copolymers were synthesized by Witting reaction and characterized. ITO/copolymer/Ca and ITO/copolymer/A1 structured light emitting diodes(LED) were fabricated and their I-V characteristics were examined. Copolymers showed $\pi$-$\pi$ transition in UV-Vis./NIR spectra. The PL and abosorption spectrum showed the symmetric vibration modes with mirror images which means that copolymers are highly aligned. By introducing aliphatic hydrocarbon group on polymer main chain, the solubility of copolymers was improved and no significant effects of substituent were observed. The band offset of copolymers are well suited as light emitting material for LED application than monomer or oligomer does. THe band offset of copolymers is ∼3eV in PL spectrum and the threshold voltages of ITO/copolymer/Ca and ITO/copolymer/Al structured LED 3V, 12V respectively. In the case of ITO/copolymer/Ca LED, it is believed that the amount of electrons and holes is well balanced and the recombination of opposite charges occurs easily because the work functions of Ca and Al electrodes are 2.9 and 4.3eV respectively and the difference in barrier height between polymer and electrode was small.

  • PDF

Service life prediction of rubber seal materials for immersion tunnel by accelerated thermal degradation tests (가속 열 노화시험을 이용한 침매터널용 고무 씰 소재의 사용수명 예측)

  • Park, Joon-Hyung;Park, Kwang-Hwa;Park, Hyeong-Geun;Kwon, Young-Il;Kim, Jong-Ho;Sung, Il-Kyung
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.275-290
    • /
    • 2009
  • This paper considers accelerated thermal degradation tests which are performed for rubber seal materials used for undersea tunnels constructed by immersion method. Three types of rubber seals are tested; rubber expansion seal, omega seal, and shock absorber hose. Main ingredient of rubber expansion seal is EPDM(Ethylene Propylene Diene Monomer) and that of both omega seal and shock absorber hose is SBR(Styrene Butadiene Rubber). The accelerated stress is temperature and an Arrhenius model is introduced to describe the relationship between the lifetime and the stress. From the accelerated degradation tests, dominant failure mode of the rubber seals is found to be the loss of elongation. The lifetime distribution and the service life of the rubber seals at use condition are estimated from the test results. The acceleration factor for three types of rubber seals are also investigated.

  • PDF