• 제목/요약/키워드: main Rate

검색결과 5,340건 처리시간 0.035초

산화속도 및 회수율 향상을 위한 고효율 장치 핵심 메커니즘 설계 (Design on Main Mechanism of High Throughput Device for Enhancement of Oxidation and Recover Rate)

  • 김영환;박병석;정재후;윤지섭;황정식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.473-476
    • /
    • 2008
  • In this paper, we designed the main mechanism of high throughput device for rod-cuts of spent fuel. For this, we analyzed the mechanical methods(slitting, ball mill, roller straightening) and chemical methods(muffle furnace, rotary kiln). As the results, methods of ball drop and rotary drum for concepts design were selected in the analysis step. For enhancement of oxidation rate, we devised the blades on the reactor with mesh type. Also, for enhancement of decladding rate, we designed ball size and rotation reactor with mesh type and devised the vacuum system for fission products. Mechanisms of oxidation and recovery can simultaneously handle the rod-cuts of spent fuel and independently recover. The results of mechanism design can be used for scale-up of high throughput device.

  • PDF

수압시험 시 관 단면적 비 및 충수 속도별 탱크 내부 과압 발생에 관한 해석 (Analysis of Internal Overpressure by Pipe Cross-Sectional Area Ratio and Filling Rate in the Hydraulic Test of Shipboard Tank)

  • 김근곤;이탁기
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.460-472
    • /
    • 2023
  • This study was conducted based on the case of an accident (excessive deformation) that occurred during the hydraulic test of a shipboard tank manufactured in accordance with the design regulations. Over-pressure phenomenon was noted as the main cause of accidents in the process of testing tanks without physical damage, which can be found in external factors such as cross-sectional difference between inlet pipe and air pipe and higher water filling rate than the recommended one. The main goal of this paper is to establish a safe water filling rate according to the range of sectional area ratio(SAR) reduced below the regulations for each test situation. The simulation was conducted in accordance with the hydraulic test procedure specified in the Ship Safety Act, and the main situation was divided into two types: filling the tank with water and increasing the water head to the test pressure. The structural safety evaluation of the pressure generated inside the tank and the effect on the structure during the test was reviewed according to the SAR range. Based on the results, guidelines for the optimal filling rate applicable according to SAR during the hydraulic test were presented for the shipboard tanks used in this study.

침자극이 좌관맥상과 심박수 미세변화에 미치는 영향 (Study on the Radial Pulse Wave Variables and Heart Rate Variability after Acupuncture Stimulation)

  • 원재균;정순관;김동은;임진영;권영달;염승룡;이수경;송용선
    • 동의생리병리학회지
    • /
    • 제23권1호
    • /
    • pp.237-244
    • /
    • 2009
  • We investigated the effects of acupuncture stimulation on pulse wave variables and heart rate variability (HRV) in healthy adults. To evaluate twenty healthy volunteers (10 men, 10 women) had acupuncture into both Hapkok (Ll4) and Taechung (Liv3) for 15 minutes. Radial pulse, Heart Rate Variability, body temperature and blood pressure were checked before and after acupuncture to evaluate Pulse Wave Variability and Autonomous Function. The results were as follows; Heart rate was significantly increased while systolic blood pressure (mmHg) and diastolic blood pressure (mmHg) were significantly increased after acupuncture treatment. Sixteen subjects didn't change representative pulse wave variables after acupuncture treatment. Energy, height of main peak (H1), height of pre-dicrotic valley (H2) and height of descending valley (H4) were decreased while height of dicrotic peak (H5) was significantly decreased after acupuncture treatment. Time to main peak (T1), time to pre-dicrotic valley (T2), time to dicrotic peak (T5), total time (T) and T-T4 were decreased while time to descending valley (T4) was increased after acupuncture treatment. Total area (At), area of main peak (Aw) and ratio of diastolic period area (Ad) were decreased while ratio of systolic period area (As) and angle of main peak (MPA) were increased after acupuncture treatment. The standard deviation of all normal RR intervals (SDNN) was increased while the root mean square of successive differences between the normal heart beats (RMSSD) was significantly increased after acupuncture treatment by time domain analysis. Low frequency power (LF) and LF/HF ratio were decreased while high frequency power (HF) was significantly increased after acupuncture treatment by frequency domain analysis. This study suggests that acupuncture treatment changes pulse wave variability and heart rate variability. Further study on various acupuncture treatment for pulse wave variability and heart rate variability is required.

밸브 없는 양방향 피에조 마이크로펌프의 유동해석 (A Numerical Study on Flow Analysis of a Valveless Bidirectional Piezoelectric Micropump)

  • 이상혁;허인영;허남건
    • 한국유체기계학회 논문집
    • /
    • 제11권3호
    • /
    • pp.14-21
    • /
    • 2008
  • A numerical simulation on the flow field of a valveless bidirectional piezoelectric micropump has been performed. In this type of micropump, the oscillation of the piezoelectric diaphragm generates the blowing and suction flow through the oblique channel from the pumping chamber. The angle between the oblique and main channel causes the variation of flow distribution through upstream and downstream channels in suction and blowing modes. In the suction flow mode, the working fluid flows from both the upstream and downstream of the main channel to the pumping chamber through the oblique channel. However, in the blowing flow mode, the fluid pushed out of the pumping chamber flows more toward the downstream of the main channel due to the inertia of the fluid. In the present study, the effects of geometries such as the angle of oblique channel and the shape of main channel on the flow rate of the up/downstream were investigated. The flow rate obtained from the pump and the energy required to the pump were also analyzed for various displacements and frequencies of the oscillation of the diaphragm.

냉방주체 운전모드에서 동시냉난방 열펌프 성능향상에 관한 실험적 연구 (Experimental Study on the Performance Improvement of a Simultaneous Heating and Cooling Heat Pump in the Cooling-main Operating Mode)

  • 정현준;주영주;강훈;김용찬;최종민
    • 설비공학논문집
    • /
    • 제20권5호
    • /
    • pp.314-320
    • /
    • 2008
  • The cooling load in winter is significant in buildings and hotels because of the usage of office equipments and the improved wall insulation. Hence, a multi~heat pump is required to cover heating and cooling simultaneously for each indoor unit. In this study, the operating characteristics and performance of a simultaneous heating and cooling heat pump in the cooling-main operating mode were investigated experimentally. The system adopted a variable speed compressor using R410A with four indoor units and one outdoor unit. In the cooling-main mode, the heating capacity decreased due to reduction of flow rate to the indoor unit under heating mode operation. The EEV opening was adjusted to increase flow rate to the indoor unit under heating mode operation. The total capacity and COP in the cooling-main mode increased by 20.5% and 29.2%, respectively, compared with those in the cooling-only mode.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

오리피스를 이용한 엔진 윤활시스템 유량분배 제어 (Oil Flow Distribution Control of Engine Lubrication System Using Orifice Component)

  • 윤정의
    • Tribology and Lubricants
    • /
    • 제22권1호
    • /
    • pp.47-52
    • /
    • 2006
  • It is very important to control pressure and flow rate distribution on each component of engine lubrication network. Sometimes many kinds of orifice are used to control flow rate in the hydraulic lubrication field. In this study orifices were adopted on the lubrication network to control oil flow rate distribution. And unsteady transient flow network analysis was carried out to find out the effects of orifices on the engine oil circuit system.

ATM 망에서 호 설정 정보를 이용한 명시적 전송률 할당 알고리즘 (Explicit Rate Allocation Algorithsm using the Connection Setup Information in ATM Networks)

  • 김대일;김중민;박인갑
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(1)
    • /
    • pp.379-382
    • /
    • 2001
  • In this paper, a new enhanced early fair rate allocation(EFRA+) algorithm is proposed for ATM switches supporting ABR service. The central issue of explicit rate control algorithms for ABR service is the computation of max-min fair rates for every connection. The EFRA+ inherits the main feature of the EFRA, uses the connection control information during the connection setup to prevent potential congestion in switches, and enhances the computation method of the max-min fair rate.

  • PDF

Establishment of Injection Protocol of Contrast Material in Pulmonary Angiography using Test Bolus Method and 16-Detector-Row Computed Tomography in Normal Beagle Dogs

  • Choi, Sooyoung;Kwon, Younghang;Park, Hyunyoung;Kwon, Kyunghun;Lee, Kija;Park, Inchul;Choi, Hojung;Lee, Youngwon
    • 한국임상수의학회지
    • /
    • 제34권5호
    • /
    • pp.330-334
    • /
    • 2017
  • The aim of this study was to establish an injection protocol of a test bolus and a main bolus of contrast material for computed tomographic pulmonary angiography (CTPA) for visualizing optimal pulmonary arteries in normal beagle dogs. CTPA using a test bolus method from either protocol A or B were performed in each of four normal beagle dogs. In protocol A, CTPA was conducted with a scan duration for around 8 s, setting the contrast enhancement peak of the pulmonary trunk in the middle of the scan duration. The arrival time to the contrast enhancement peak was predicted from a previous dynamic scan using a test bolus (150 mg iodine/kg) injected with the same injection duration using for a main bolus (450 mg iodine/kg). In protocol B, CTPA was started at the predicted appearance time of contrast material in the pulmonary trunk based on a previous dynamic scan using a test bolus injected with the same injection rate as a main bolus. CTPA using protocol A showed the optimal opacification of the pulmonary artery with pulmonary venous contamination. Proper CTPA images in the absence of venous contamination were obtained in protocol B. CTPA with a scan duration for 8 s should be started at the appearance time of contrast enhancement in the pulmonary trunk, which can be identified exactly when a test bolus is injected at the same injection rate used for the main bolus.

초고속 동작을 위한 더블 게이트 MOSFET 특성 분석 (Analysis of Double Gate MOSFET characteristics for High speed operation)

  • 정학기;김재홍
    • 한국정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.263-268
    • /
    • 2003
  • 본 논문에서는 main gate(MG)와 side gate(SG)를 갖는 double gate(DG) MOSFET 구조를 조사하였다. MG가 50nm일 때 최적의 SG 전압은 약 3V임을 알 수 있었고, 각각의 MG에 대한 최적의 SG 길이는 약 70nm임을 알 수 있었다. DG MOSFET는 매우 작은 문턱 전압 roll-off 특성을 나타내고, 전류-전압 특성곡선에서 VMG=VDS=1.5V, VSG=3V인 곳에서 포화전류는 550$\mu\textrm{A}$/m임을 알 수 있었다. subthrehold slope는 82.6㎷/decade, 전달 컨덕턴스는 l14$\mu\textrm{A}$/$\mu\textrm{m}$ 그리고 DIBL은 43.37㎷이다 다중 입력 NAND 게이트 로직 응용에 대한 이 구조의 장점을 조사하였다. 이때, DG MOSFET에서 41.4GHz의 매우 높은 컷오프 주파수를 얻을 수 있었다.