• Title/Summary/Keyword: magnitude

Search Result 8,036, Processing Time 0.035 seconds

Section Model Study on the Aerodynamic Behaviors of the Cable-Stayed Bridges with Two I-Type Girders Considering Structural Damping and Turbulence Intensity (2개의 I형 거더를 가진 사장교의 구조감쇠비 및 난류강도를 고려한 공기역학적 거동에 관한 단면모형실험 연구)

  • Cho, Jae-Young;Kim, Young-Min;Cho, Young-Rae;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1013-1022
    • /
    • 2006
  • Although the cable-stayed bridges with two I-type girders inherently do not have good aerodynamic characteristics, a lot of the bridges with this type girders are constructed in Korea recently because of an economical merit. This paper investigated the aerodynamic characteristics of the cable-stayed bridges with two I-type girders. Section model tests were conducted in order to investigate the aerodynamic behaviors of this section with varying of the angles of attack, turbulence intensity and damping ratios. Two deck section configurations with different torsional stiffness were studied under construction and after completion respectively. Three types of the fairings were investigated to improve the aerodynamic characteristics of the bridges. The result of this study showed that the traditional section model test in uniform flow estimates the aerodynamic behavior rather pessimistically. The wind induced responses of the bridges were severely varied in accordance with the turbulence intensity and the structural damping ratio. The proposed fairing reduced the magnitude of the vortex-shedding vibrations and buffeting responses. It also increased the wind speed at which flutter occurs. It is expected that these investigations would provide a lot of information for the design of the cable stayed bridges with two I-type girders regarding wind resistance.

Stability Analysis of Unsaturated Weathered Soil Slopes Considering Rainfall Duration (지속강우특성에 따른 불포화 풍화토사면의 안정성분석)

  • Jeong, Sang-Seom;Choi, Jae-Young;Lee, Jae-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, the influence of wetting band depth by continuous rainfall and the magnitude of wetting front suction on the stability of slopes in weathered soils were investigated by using finite element programs SEEP/W and SLOPE/W. Three different intensities of rainfall (10mm/hr, 30mm/hr, 50mm/hr) were chosen, and the total duration of rainfall was 96 hours. Three infinite slopes with the inclination of 1:1.5 and 1:1.8, 1:2.0 were considered and the typical properties and the shear strength parameters of the weathered soil were applied. It is shown that rainfall duration plays an important role in slope stability. Based on the analytical results, it is found that as the rainfall duration increases, the wetting band depth also increases. Also, the increasing rate of the wetting band depth was decreased as the soil density was increased. These results come from the decrease of the coefficient of permeability and the increase of the soil suction. Finally, it is also shown that the safety factors of slopes by unsaturated analysis are mostly larger than those by saturated analysis. Therefore, commonly used saturated analysis may substantially underestimate the degree of safety factor in realistic situations.

Comparative analysis of craniofacial asymmetry in subjects with and without symptoms of temporomandibular joint disorders: a cross-sectional study

  • Anita Pradhan;Preeti Bhattacharya;Shivani Singh;Anil Kumar Chandna;Ankur Gupta;Ravi Bhandari
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.3
    • /
    • pp.125-134
    • /
    • 2023
  • Objectives: The aim of the study was to quantify and compare craniofacial asymmetry in subjects with and without symptoms of temporomandibular joint disorders (TMDs). Materials and Methods: A total of 126 adult subjects were categorized into two groups (63 with a TMDs and 63 without a TMDs), based on detection of symptoms using the Temporomandibular Joint Disorder-Diagnostic Index (TMD-DI) questionnaire. Posteroanterior cephalograms of each subject were traced manually and 17 linear and angular measurements were analyzed. Craniofacial asymmetry was quantified by calculating the asymmetry index (AI) of bilateral parameters for both groups. Results: Intra- and intergroup comparisons were analyzed using independent t-test and Mann-Whitney U test, respectively, with a P<0.05 considered statistically significant. An AI for each linear and angular bilateral parameter was calculated; higher asymmetry was found in TMD-positive patients compared with TMD-negative patients. An intergroup comparison of AIs found highly significant differences for the parameters of antegonial notch to horizontal plane distance, jugular point to horizontal plane distance, antegonial notch to menton distance, antegonial notch to vertical plane distance, condylion to vertical plane distance, and angle formed by vertical plane, O point and antegonial notch. Significant deviation of the menton distance from the facial midline was also evident. Conclusion: Greater facial asymmetry was seen in the TMD-positive group compared with the TMD-negative group. The mandibular region was characterized by asymmetries of greater magnitude compared with the maxilla. Patients with facial asymmetry often require management of temporomandibular joint (TMJ) pathology to achieve a stable, functional, and esthetic result. Ignoring the TMJ during treatment or failing to provide proper management of the TMJ and performing only orthognathic surgery may result in worsening of TMJ-associated symptoms (jaw dysfunction and pain) and re-occurrence of asymmetry and malocclusion. Assessments of facial asymmetry should take into account TMJ disorders to improve diagnostic accuracy and treatment outcomes.

Evaluation of Near Subsurface 2D Vs Distribution Map using SPT-Uphole Tomography Method (SPT-업홀 토모그래피 기법을 이용한 지반의 2차원 전단파 속도 분포의 도출)

  • Bang, Eun-Seok;Kim, Jong-Tae;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.143-155
    • /
    • 2006
  • SPT-Uphole tomography method was introduced for the evaluation of near subsurface shear wave velocity (Vs) distribution map. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole tomography method was performed at the weathered soil site where several boring data with SPT-N values are available, and the feasibility of proposed method was verified in the field.

Shaking table tests of prestressed damping-isolation units using a spring and rubbers

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Im, Chae-Rim;Won, Eun-Bee
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2022
  • To improve the seismic performance of suspended ceiling structures, various vibration-damping devices have been developed. However, the devices made of metals have a limit in that they cause large deformation and seriously damages the exterior of the suspended ceiling structure from the wall. As a results, their strengthening effect of the suspended ceiling structure was minimal. Thus, this study employed a spring and vibration-proof rubber effectively controlled vibrations without increasing horizontal seismic loads on the ceiling to enhance the seismic resistance of suspended ceiling structures. The objective of the study is to examine the dynamic properties of a seismic damping-isolation unit (SDI) with various details developed. The developed SDI was composed of a spring, embossed rubbers, and prestressed bolts, which were the main factors enhancing the damping effect. The shaking table tests were performed on eight SDI specimens produced with the number of layers of embossed rubber (ns), presence or absence of a spring, prestressed force magnitude introduced in bolts (fps), and mass weight (Wm) as the main parameters. To identify the enhancement effect of the SDI, the dynamic properties of the control specimen with a conventional hanger bolt were compared to those of the SDI specimens. The SDI specimens were effective in reducing the maximum acceleration (Ac max), acceleration amplification factor (αp), relative displacement (δR), and increasing the damping ratio (ξ) when compared to the control specimen. The Ac max, αp, and δR of the SDI specimens with two rubbers, spring, and fps of 0.1fby, where fby is the yielding strength of the screw bolt were 57.8%, 58.0%, and 61.9% lower than those of the conventional hanger bolt specimens, respectively, resulting in the highest ξ (=0.127). In addition, the αp of the SDI specimens was 50.8% lower than those specified in ASCE 7 and FEMA 356. Consequently, to accurately estimate the αp of the SDI specimens, a simple model was proposed based on the functions of fps, stiffness constant of the spring (K), Wm, and ns.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Applying the Multiple Cue Probability Learning to Consumer Learning

  • Ahn, Sowon;Kim, Juyoung;Ha, Young-Won
    • Asia Marketing Journal
    • /
    • v.15 no.3
    • /
    • pp.159-172
    • /
    • 2013
  • In the present study, we apply the multiple cue probability learning (MCPL) paradigm to examine consumer learning from feedback in repeated trials. This paradigm is useful in investigating consumer learning, especially learning the relationships between the overall quality and attributes. With this paradigm, we can analyze what people learn from repeated trials by using the lens model, i.e., whether it is knowledge or consistency. In addition to introducing this paradigm, we aim to demonstrate that knowledge people gain from repeated trials with feedback is robust enough to weaken one of the most often examined contextual effects, the asymmetric dominance effect. The experiment consists of learning session and a choice task and stimuli are sport rafting boats with motor engines. During the learning session, the participants are shown an option with three attributes and are asked to evaluate its overall quality and type in a number between 0 and 100. Then an expert's evaluation, a number between 0 and 100, is provided as feedback. This trial is repeated fifteen times with different sets of attributes, which comprises one learning session. Depending on the conditions, the participants do one (low) or three (high) learning sessions or do not go through any learning session (no learning). After learning session, the participants then are provided with either a core or an extended choice set to make a choice to examine if learning from feedback would weaken the asymmetric dominance effect. The experiment uses a between-subjects experimental design (2 × 3; core set vs. extended set; no vs. low vs. high learning). The results show that the participants evaluate the overall qualities more accurately with learning. They learn the true trade-off rule between attributes (increase in knowledge) and become more consistent in their evaluations. Regarding the choice task, there is a significant decrease in the percentage of choosing the target option in the extended sets with learning, which clearly demonstrates that learning decreases the magnitude of the asymmetric dominance effect. However, these results are significant only when no learning condition is compared either to low or high learning condition. There is no significant result between low and high learning conditions, which may be due to fatigue or reflect the characteristics of learning curve. The present study introduces the MCPL paradigm in examining consumer learning and demonstrates that learning from feedback increases both knowledge and consistency and weakens the asymmetric dominance effect. The latter result may suggest that the previous demonstrations of the asymmetric dominance effect are somewhat exaggerated. In a single choice setting, people do not have enough information or experience about the stimuli, which may lead them to depend mostly on the contextual structure among options. In the future, more realistic stimuli and real experts' judgments can be used to increase the external validity of study results. In addition, consumers often learn through repeated choices in real consumer settings. Therefore, what consumers learn from feedback in repeated choices would be an interesting topic to investigate.

  • PDF

Stochastic Self-similarity Analysis and Visualization of Earthquakes on the Korean Peninsula (한반도에서 발생한 지진의 통계적 자기 유사성 분석 및 시각화)

  • JaeMin Hwang;Jiyoung Lim;Hae-Duck J. Jeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.493-504
    • /
    • 2023
  • The Republic of Korea is located far from the boundary of the earthquake plate, and the intra-plate earthquake occurring in these areas is generally small in size and less frequent than the interplate earthquake. Nevertheless, as a result of investigating and analyzing earthquakes that occurred on the Korean Peninsula between the past two years and 1904 and earthquakes that occurred after observing recent earthquakes on the Korean Peninsula, it was found that of a magnitude of 9. In this paper, the Korean Peninsula Historical Earthquake Record (2 years to 1904) published by the National Meteorological Research Institute is used to analyze the relationship between earthquakes on the Korean Peninsula and statistical self-similarity. In addition, the problem solved through this paper was the first to investigate the relationship between earthquake data occurring on the Korean Peninsula and statistical self-similarity. As a result of measuring the degree of self-similarity of earthquakes on the Korean Peninsula using three quantitative estimation methods, the self-similarity parameter H value (0.5 < H < 1) was found to be above 0.8 on average, indicating a high degree of self-similarity. And through graph visualization, it can be easily figured out in which region earthquakes occur most often, and it is expected that it can be used in the development of a prediction system that can predict damage in the event of an earthquake in the future and minimize damage to property and people, as well as in earthquake data analysis and modeling research. Based on the findings of this study, the self-similar process is expected to help understand the patterns and statistical characteristics of seismic activities, group and classify similar seismic events, and be used for prediction of seismic activities, seismic risk assessments, and seismic engineering.

Changes in Academic Motivation, Learning Strategy Use, and Test Scores by Private Tutoring Hours (사교육 시간에 따른 학습동기, 학습전략 사용 및 학업성취도의 변화)

  • Yoonkyung Chung ;Minhye Lee ;Yeon-kyoung Woo ;Mimi Bong ;Sung-il Kim
    • Korean Journal of Culture and Social Issue
    • /
    • v.16 no.2
    • /
    • pp.103-124
    • /
    • 2010
  • The purpose of the present study was to examine the relationships among private tutoring hours, academic motivation, use of learning strategies, and academic achievement test scores using structural equation modeling. The sample consisted of 3,607 7th graders from Korean middle schools who were included in the Korean Education Longitudinal Study. The results suggest that there was no evidence that the private tutoring hours predicted students' motivation and learning strategy use. It was found that the private tutoring hours predicted achievements in English and Math, but it was negligible in magnitude. As for achievement test scores, academic motivation and the use of learning strategies played more critical role rather than the private tutoring hours.

  • PDF

Radiological and Geochemical Assessment of Different Rock Types from Ogun State in Southwestern Nigeria

  • Olabamiji Aliu Olayinka;Alausa Shamsideen Kunle
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.251-261
    • /
    • 2023
  • Background: This paper deals with the study of natural radioactivity in rocks from Ogun State in Southwestern Nigeria. The aim is to determine radiation emissions from rocks in order to estimate radiation hazard indices. Objectives: The following objectives were targeted: 1. To determine radiation emissions from each type of rocks; 2. To estimate radiation hazard indices based on the rocks; 3. To correlate the activity concentrations of radionuclides with major oxides. Methods: The samples were analyzed using a NaI (Tl) gamma ray spectrometric detector and PerkinElmer AAnalyst 400 AAS spectrometer. Results: The activity of 40K, 226Ra, and 232Th were found in order of decreasing magnitude from pegmatite>granite>migmatite. In contrast, lower concentrations were found in shale, phosphate, clay stone, sandstone and limestone. The mean absorbed doses were 125±23 nGyh-1 (migmatite), 74±13 nGy/h (granite), 72±13 nGyh-1 (pegmatite), 64±09 nGyh-1 (quartzite), 45±16 nGyh-1 (shale), 41±09 nGyh-1 (limestone), 41±11 nGyh-1 (clay stone), 24±03 nGyh-1 (phosphate), and 21±10 nGyh-1 (sandstone). The outdoor effective dose rates in all rock samples were slightly higher than the world average dose value of 0.34 mSvy-1. The percentage composition of SiO2 in the rock samples was above 50 wt% except for in the limestone, shale and phosphate. Al2O3 ranged from 4.10~21.24 wt%, Fe2O3 from 0.39~7.5 wt%, and CaO from 0.09-46.6 wt%. In addition, Na2O and K2O were present in at least 5 wt%. Other major oxides, including TiO2, P2O5, K2O, MnO, MgO and Na2O were depleted. Conclusions: The findings suggest that Ogun State may be described as a region with elevated background radiation. It is recommended that houses should be constructed with good cross ventilation and residences should use home radiation monitoring instruments to monitor radon emanating from walls.