• Title/Summary/Keyword: magnetron anode

Search Result 62, Processing Time 0.025 seconds

UBET Analysis and Model Test of the Forming Process of Magnetron Anode (마그네트론 양극 성형공정의 UBET해석 및 모형실험)

  • Jo, K.H.;Bae, W.B.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.126-136
    • /
    • 1995
  • Copper magnetron anode of a microsave-over consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex processes; vane blanking, pipe cutting and silver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique (UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the roral power consumption with repect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

A UBET Analysis of The Warm Forming Process of Magnetron Anode (마그네트론 양극의 온간성형 공정의 UBET해석)

  • 조관형;배원병;김영호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.204-208
    • /
    • 1995
  • Copper magnetron anode of a microwave-oven consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex process ; vane blanking, pipe cutting and sliver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique(UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the total power consumption with respect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

A Design of Phase-Shifted FB-ZVS PWM Converter for Driving Magnetron and Its Average Anode Current Controller

  • Lee Wan-Yun;Chung Gyo-Bum;Shin Pan-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.140-145
    • /
    • 2001
  • This paper proposes to use a 20[kHz] phase­shifted Full-Bridge (FB) Zero-Voltage-Switched (ZVS) PWM converter in order to drive a 600[W] magnetron, and analyzes the operational modes in a switching period. Additionally, the controller of the average anode current is designed. Simulation studies and experiments verify that the proposed converter and the average anode current controller shows good performance to drive the magnetron.

  • PDF

Characteristics of Indium Zinc Tin Oxide films grown by RF magnetron sputtering for organic light emitting diodes (RF magnetron sputtering system으로 성장시킨 OLED용 IZTO 박막의 특성연구)

  • Park, Ho-Kyun;Jeong, Soon-Wook;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.412-413
    • /
    • 2007
  • We report on the electrical, optical, and structural properties of indium zinc tin oxide (IZTO) anode films grown at room temperature on glass substrate. The IZTO anode films grown by a RF magnetron sputtering were investigated as functions of RF power, working pressure, and process time in pure Ar ambient. To investigate electrical, optical and structural properties of IZTO anode films, 4-point probe, Hall measurement, UV/Vis spectrometer, Field Emission Scanning Electron Microscopy (FE-SEM), and X-ray diffraction (XRD) were performed, respectively. A sheet resistance of $13.88\;{\Omega}/{\square}$, average transmittance above 80 % in visible range were obtained from optimized IZTO anode films grown on glass substrate. These results shown the amorphous structure regardless of RF power and working pressure due to low substrate temperature.

  • PDF

Characteristics of Amorphous IZO Anode Films Grown on Passivated PES Substrates in Oxygen Free Ambient for Flexible OLEDs (아르곤 가스만을 이용하여 PES 기판 상에 성장시킨 플렉시블 유기발광소자용 비정질 IZO 애노드 박막의 특성)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jung, Soon-Wook;Kang, Jae-Wook;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.12
    • /
    • pp.1134-1139
    • /
    • 2006
  • Electrical, optical, and structural properties of indium zinc oxide (IZO) anode films grown by a RF magnetron sputtering were investigated as functions of RF power and working pressure in pure Ar ambient. To investigate electrical, optical and structural properties of IZO anode films, 4-point probe and UV/VIS spectrometry, and X-ray diffraction (XRD) were performed, respectively. A sheet resistance of $15.2{\Omega}/{\square}$, average transmittance above 80 % in visible range, expecially above 85 % in 550 nm, and root mean square roughness of 1.13 nm were obtained from optimized IZO anode films grown in oxygen free ambient. All samples show amorphous structure regardless of RF power and working pressure due to low substrate temperature. In addition, XPS depth profile obtained from IZO/PES exhibits that there is no obvious evidence of interfacial reaction between IZO and PES substrate. Furthermore, current-voltage-luminance of the flexible phosphorescent flexible OLEDs fabricated on IZO anode shows dependence on sheet resistance of the IZO anode. These results indicate that the IZO anode is a promising candidate to substitute conventional ITO anode for high-quality flexible displays.

A study on the enhancement of hole injection in OLED using NiO/AZO Anode (NiO/AZO anode를 적용한 OLED의 정공주입 향상에 관한 연구)

  • Jin, Eun-Mi;Song, Min-Jong;Kim, Jin-Sa;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.444-445
    • /
    • 2007
  • Aluminum-doped zinc oxide (AZO) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with indium tin oxide (ITO). AZO films have been deposited on glass (coming 1737) substrates by RF magnetron sputtering system. An ultrathin layer of nickel oxide (NiO) was deposited on the AZO anode to enhance the hole injections in organic light-emitting diodes (OLED). The current density-voltage and luminescence-voltage properties of devices were studied and compared with ITO device.

  • PDF

Characteristics of phosphorescent OLEDs and flexible OLED fabricated indium-zinc-tin-oxide anode (IZTO 애노드를 이용하여 제작한 인광 OLED 및 플랙시블 OLED 특성)

  • Choi, Kwang-Hyuk;Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Jin-A;Kim, Han-Ki;Kang, Jae-Wook;Kim, Jang-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.399-400
    • /
    • 2007
  • In this work, we have investigated the characteristics of the phosphorescent OLED and flexible OLED fabricated on IZTO/glass and IZTO/PET anode film grown by magnetron sputtering, respectively. Electrical and optical characteristics of amorphous IZTO/glass anode exhibited similar to commercial ITO anode even though it was deposited at room temperature. In addition, the amorphous IZTO anode showed higher work function than that of the commercial ITO anode after ozone treatment for 10 minutes. Furthermore, a phosphorescent OLED fabricated on amorphous IZTO anode film showed improved current-voltage-luminance characteristics, external quantum efficiency and power efficiency in contrast with phosphorescent OLED fabricated on commercial ITO anode film. This indicates that IZTO anode is promising alternative anode materials for anode in OLEDs and flexible OLEDs.

  • PDF