• 제목/요약/키워드: magnetohydrodynamics

검색결과 68건 처리시간 0.018초

Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism

  • Sharif, Humaira;Naeem, Muhammad N.;Khadimallah, Mohamed A.;Ayed, Hamdi;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Hussain, Sajjad;Hussain, Muzamal;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.357-367
    • /
    • 2020
  • The impulse of this paper is to examine the influence of unsteady flow comprising of Eyring-Powell nanofluid over a stretched surface. This work aims to explore efficient transfer of heat in Eyring-Powell nanofluid with bio-convection. Nanofluids possess significant features that have aroused various investigators because of their utilization in industrial and nanotechnology. The influence of including motile microorganism is to stabilize the nanoparticle suspensions develop by the mixed influence of magnetic field and buoyancy force. This research paper reveals the detailed information about the linearly compressed Magnetohydrodynamics boundary layer flux of two dimensional Eyring-Powell nanofluid through disposed surface area due to the existence of microorganism with inclusion the influence of non- linear thermal radiation, energy activation and bio-convection. The liquid is likely to allow conduction and thickness of the liquid is supposed to show variation exponentially. By using appropriate similarity type transforms, the nonlinear PDE's are converted into dimensionless ODE's. The results of ODE's are finally concluded by employing (HAM) Homotopy Analysis approach. The influence of relevant parameters on concentration, temperature, velocity and motile microorganism density are studied by the use of graphs and tables. We acquire skin friction, local Nusselt and motil microorganism number for various parameters.

곡관의 하류에 설치된 전자기유량계의 유량신호 특성에 관한 실험적 연구(난류 유동) (An Experimental Study on Installation Effects of Pipe Elbow on the Electromagnetic Flowmeter Characteristics (Turbulent Flow))

  • 임기원
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1613-1621
    • /
    • 2002
  • An electromagnetic flowmeter(EMF) essentially averages the velocity distribution over the pipe cross- sectional area, and the measured value is dependent on the velocity profiles. In this study, installation effects of 90$^{\circ}$long elbow(KS B 1522, ISO 3419) on the EMF characteristics was investigated. A commercial EMF was adopted and the distribution of magnetic field in the electrodes cross section was measured. In the experiment, the national flow standard system, of which measurement uncertainty was evaluated in accordance with ISO 17025 recommendation, was used fur characterization of EMF. The leading line has 150D long straight pipe to established a fully developed flow before entering into the elbow and the elbow was installed downstream of it. then the flowmeter was tested within 50 D from the elbow. The installation effects of the flowmeter were investigated by varying the mean velocity(Reynolds No.)in pipe section, the locations and the direction of electrodes plane.($\phi$) From the experimental results, we find the optimal conditions to get most accurate measurements. Generally, the deviations from the calibration value were less than 0.5 % in farther than 10D distance from the elbow and the direction of electrode plane. $\phi$ = 90$^{\circ}$yielded the smallest measurement deviation. These characteristics were shown consistently in turbulent region regardless of the mean Reynolds number.

Three-Dimensional Numerical Magnetohydrodynamic Simulations of Magnetic Reconnection in the Interstellar Medium

  • TANUMA SYUNITI;YOKOYAMA TAKAAKI;KUDOH TAKAHIRO;SHIBATA KAZUNARI
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.309-311
    • /
    • 2001
  • Strong thermal X-ray emission, called Galactic Ridge X-ray Emission, is observed along the Galactic plane (Koyama et al. 1986). The origin of hot ($\~$7 keV) component of GRXE is not known, while cool ($\~$0.8 keV) one is associated with supernovae (Kaneda et al. 1997, Sugizaki et al. 2001). We propose a possible mechanism to explain the origin; locally strong magnetic fields of $B_{local}\;\~30{\mu}G$ heat interstellar gas to $\~$7 keV via magnetic reconnection (Tanuma et al. 1999). There will be the small-scale (< 10 pc) strong magnetic fields, which can be observed as $(B)_{obs} \;\~3{\mu}G$ by integration of Faraday Rotation Measure, if it is localized by a volume filling factor of f $\~$ 0.1. In order to examine this model, we solved three-dimensional (3D) resistive magnetohydrodynamic (MHD) equations numerically to examine the magnetic reconnect ion triggered by a supernova shock (fig.l). We assume that the magnetic field is Bx = 30tanh(y/20pc) $\mu$G, By = Bz = 0, and the temperature is uniform, at the initial condition. We put a supernova explosion outside the current sheet. The supernova-shock, as a result, triggers the magnetic reconnect ion, and the gas is heatd to > 7 keV. The magnetic reconnect ion heats the interstellar gas to $\~$7 keV in the Galactic plane, if it occurs in the locally strong magnetic fields of $B_{local}\;\~30{\mu}G$. The heated plasma is confined by the magnetic field for $\~10^{5.5} yr$. The required interval of the magnetic reconnect ions (triggered by anything) is $\~$1 - 10 yr. The magnetic reconnect ion will explain the origin of X-rays from the Galactic ridge, furthermore the Galactic halo, and clusters of galaxies.

  • PDF

Numerical simulations of the vertical kink oscillations of the solar coronal loop with field aligned flows

  • Pandey, V.S.;Magara, T.;Lee, D.H.;Selwa, M.
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.103.1-103.1
    • /
    • 2011
  • Recent observations by Hinode show weakly-attenuated coronal loop oscillations in the presence of background flow (Ofman & Wang 2008, A&A, 482, L9). We study the vertical kink oscillations in solar coronal loops, considering field aligned flows inside the loops as well as surrounding the loops environment. The two dimensional numerical model of straight slab is used to explore the excitation and attenuation of the impulsively triggered fast magnetosonic standing kink waves. A full set of time dependent ideal magnetohydrodynamics equations is solved numerically taking into account the value of flow of the order of observed flows detected by SOT/Hinode. We find that relaxing the assumption of the limited flows within the loops enhances the damping rate of the fundamental mode of the standing kink waves by 2 - 3 % as compared to flow pattern which is basically localized within the loops. We further notice that extending the flow pattern beyond the loop thickness also enhances the strength of the shock associated with slow magnetoacoustic waves, recognized as an addition feature detected in the numerical simulation. The wider out-flow pattern destroys the oscillation patterns early as compared to narrower flow pattern, in other words we can say that it affects the durability of the oscillation. However, for the typical coronal loops parameters we find that the observed durability periods of the SOT/Hinode observation can be achieved with an out-flow Gaussian patterns for which half-width is not greater than factor 2.0 of the loop-half-width. explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Collisionless Magnetic Reconnection and Dynamo Processes in a Spatially Rotating Magnetic Field

  • Lee, Junggi;Choe, G.S.;Song, Inhyeok
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.45.1-45.1
    • /
    • 2016
  • Spatially rotating magnetic fields have been observed in the solar wind and in the Earth's magnetopause as well as in reversed field pinch (RFP) devices. Such field configurations have a similarity with extended current layers having a spatially varying plasma pressure instead of the spatially varying guide field. It is thus expected that magnetic reconnection may take place in a rotating magnetic field no less than in an extended current layer. We have investigated the spontaneous evolution of a collisionless plasma system embedding a rotating magnetic field with a two-and-a-half-dimensional electromagnetic particle-in-cell (PIC) simulation. In magnetohydrodynamics, magnetic flux can be decreased by diffusion in O-lines. In kinetic physics, however, an asymmetry of the velocity distribution function can generate new magnetic flux near O- and X-lines, hence a dynamo effect. We have found that a magnetic-flux-reducing diffusion phase and a magnetic-flux-increasing dynamo phase are alternating with a certain period. The temperature of the system also varies with the same period, showing a similarity to sawtooth oscillations in tokamaks. We have shown that a modified theory of sawtooth oscillations can explain the periodic behavior observed in the simulation. A strong guide field distorts the current layer as was observed in laboratory experiments. This distortion is smoothed out as magnetic islands fade away by the O-line diffusion, but is soon strengthened by the growth of magnetic islands. These processes are all repeating with a fixed period. Our results suggest that a rotating magnetic field configuration continuously undergoes deformation and relaxation in a short time-scale although it might look rather steady in a long-term view.

  • PDF

자기유체역학 코드를 이용한 축 대칭 엑스 핀치 플라즈마 구조의 2차원 전산해석 (Numerical Simulation on the Formation and Pinching Plasma in X-pinch Wires on 2-D Geometry)

  • 변상민;나용수;정경재;김덕규;이상준;이찬영;함승기;류종현
    • 한국군사과학기술학회지
    • /
    • 제24권2호
    • /
    • pp.211-218
    • /
    • 2021
  • This paper deals with the computational work to characterize the formation and pinching of a plasma in an X-pinch configuration. A resistive magnetohydrodynamic model of a single fluid and two temperature is adopted assuming a hollow conical structure in the (r,z) domain. The model includes the thermodynamic parameter of tungsten from the corrected Thomas-Fermi EOS(equation of state), determining the average ionization charge, pressure, and internal energy. The transport coefficients, resistivity and thermal conductivity, are obtained by the corrected Lee & More model and a simple radiation loss rate by recombination process is considered in the simulation. The simulation demonstrated the formation of a core-corona plasma and intense compression process near the central region which agrees with the experimental observation in the X-pinch device at Seoul National University. In addition, it confirmed the increase in radiation loss rate with the density and temperature of the core plasma.

헬리컬형 자기유체역학(MHD) 해수 추진기 소형 성능시험장치 개발 (Development of Small Performance Test Device for Helical-Type Magnetohydrodynamic (MHD) Seawater Propulsion Thruster)

  • 장두희;조종갑;장대식;김선호;진정태;류창수
    • 대한조선학회논문집
    • /
    • 제59권1호
    • /
    • pp.46-54
    • /
    • 2022
  • A magnetohydrodynamic (MHD) seawater propulsion thruster has been proposed to reduce propeller noise, propeller pitting, and vessel vibration originated from the propeller cavitation. The MHD thruster was also focused to overcome the limitation of propulsion velocity for the special purpose of marine ships. The research trends and key technologies in the worldwide leading countries are reviewed for the development of MHD propulsion thrusters in Korea. A small performance test device was developed firstly with a conventional solenoid magnet of ≤0.6 Tesla and a helical-type cylindrical duct(inner diameter of 5 cm) of thruster. The artificial seawater was fabricated by a salt solution including a conductivity of 5~6 S/m. The measured flow velocity of artificial seawater in the test device was 0.03~0.42 m/s (0.06~0.84 Knot) with a magnetic field strength of 0.6 Tesla and the applied currents of 10~80 A including the change of anode materials. It was found that the flow direction of seawater was reversed by the directional change of applied current in the solenoid magnet.

KINEMATIC OSCILLATIONS OF POST-CME BLOBS DETECTED BY K-COR ON 2017 SEPTEMBER 10

  • Lee, Jae-Ok;Cho, Kyung-Suk;Nakariakov, Valery M.;Lee, Harim;Kim, Rok-Soon;Jang, Soojeong;Yang, Heesu;Kim, Sujin;Kim, Yeon-Han
    • 천문학회지
    • /
    • 제54권2호
    • /
    • pp.61-70
    • /
    • 2021
  • We investigate 20 post-coronal mass ejection (CME) blobs formed in the post-CME current sheet (CS) that were observed by K-Cor on 2017 September 10. By visual inspection of the trajectories and projected speed variations of each blob, we find that all blobs except one show irregular "zigzag" trajectories resembling transverse oscillatory motions along the CS, and have at least one oscillatory pattern in their instantaneous radial speeds. Their oscillation periods are ranging from 30 to 91 s and their speed amplitudes from 128 to 902 km s-1. Among 19 blobs, 10 blobs have experienced at least two cycles of radial speed oscillations with different speed amplitudes and periods, while 9 blobs undergo one oscillation cycle. To examine whether or not the apparent speed oscillations can be explained by vortex shedding, we estimate the quantitative parameter of vortex shedding, the Strouhal number, by using the observed lateral widths, linear speeds, and oscillation periods of the blobs. We then compare our estimates with theoretical and experimental results from MHD simulations and fluid dynamic experiments. We find that the observed Strouhal numbers range from 0.2 to 2.1, consistent with those (0.15-3.0) from fluid dynamic experiments of bluff spheres, while they are higher than those (0.15-0.25) from MHD simulations of cylindrical shapes. We thus find that blobs formed in a post-CME CS undergo kinematic oscillations caused by fluid dynamic vortex shedding. The vortex shedding is driven by the interaction of the outward-moving blob having a bluff spherical shape with the background plasma in the post-CME CS.