• 제목/요약/키워드: magneto-rheological damper

검색결과 136건 처리시간 0.025초

타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰 (Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure)

  • 맹영준;성민상;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.343-348
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological (MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

  • PDF

역모델을 이용한 MR 댐퍼의 감쇠계수 제어 (Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

인접건축물의 진동제어를 위한 MR감쇠기의 적용 (Application of MR damper for Vibration Control of Adjacent Buildings)

  • 김기철;강주원
    • 한국공간구조학회논문집
    • /
    • 제12권4호
    • /
    • pp.99-108
    • /
    • 2012
  • In recently, sky-bridge are often applied to high-rised adjacent buildings for pedestrian bridge. the seisnic response control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. In this study, vibration control effect of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Two typed of control methods, displacement based or velocity based, are applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement-based control algorithm is more effective than velocity-based control algorithm for seismic response control of adjacent buildings. And, when displacement-based control method is applied to control of adjacent buildings, the control of building occurred large displacement is more efficient in reducing the seismic response.

MR 댐퍼의 제어 효과 향상을 위한 Cutout 피스톤 적용에 관한 연구 (A Study on the Application of the Cutout Piston for the Improvement of the MR Damper's Control Effect)

  • 김종혁;배재성;황재혁;홍예선
    • 한국소음진동공학회논문집
    • /
    • 제21권6호
    • /
    • pp.506-513
    • /
    • 2011
  • This paper is concerned with a study on the control effect of the MR damper using the cutout piston. The MR damper has passive damping force by the oil pressure and controllable damping force by the magnetic effect. As the velocity of the MR damper's piston increases the passive damping force increases and the ratio of the controllable damping force to the total damping force is decreased. Consequently, the control performance of the MR damper is reduced according to the increase of the velocity. In this paper, the cutout piston concept is applied to the MR damper to improve MR damper's control performance by reducing the passive damping effect. The MR damper with the cutout piston has been designed and manufactured and its hydraulic and electromagnetic analysis has been performed to predict its performance. The control performances of the MR damper with the cutout piston are verified through the comparison of experiment results and simulation results.

MR 댐퍼를 이용한 주륜 착륙장치 하중제어기법 연구 (Force Control of Main Landing Gear using Magneto-Rheological Damper)

  • 현영오;황재업;황재혁;배재성;임경호;김두만;김태욱
    • 한국항공우주학회지
    • /
    • 제37권4호
    • /
    • pp.344-349
    • /
    • 2009
  • 본 논문은 헬기용 주륜 착륙장치의 성능을 향상시킬 목적으로 반능동형 착륙장치를 도입하였다. 상용 유한요소 코드를 이용하여 자기장해석을 한 MR 댐퍼를 완충기에 적용 하였다. 착륙 거동 시 내력으로 발생되는 공기력과 감쇠력의 합을 일정하게 유지시키는 개념의 하중제어기법을 적용하여 반능동형 착륙장치의 제어기를 구성하였다. 다른 형태의 수동형 및 스카이 훅 제어 반 능동형 착륙장치와 함께 ADAMS를 이용한 낙하 시뮬레이션을 수행하였고 착륙특성에 대한 성능평가를 위해 그 결과들을 비교하였다.

Semi-active control of seismic response of a building using MR fluid-based tuned mass damper

  • Esteki, Kambiz;Bagchi, Ashutosh;Sedaghati, Ramin
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.807-833
    • /
    • 2015
  • While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating it with a semi-active control system enables it to perform more efficiently. In this paper a forty-story tall steel-frame building designed according to the Canadian standard, has been studied with and without semi-active and passive tuned mass dampers. The building is assumed to be located in the Vancouver, Canada. A magneto-rheological fluid based semi-active tuned mass damper has been optimally designed to suppress the vibration of the structure against seismic excitation, and an appropriate control procedure has been implemented to optimize the building's semi-active tuned mass system to reduce the seismic response. Furthermore, the control system parameters have been adjusted to yield the maximum reduction in the structural displacements at different floor levels. The response of the structure has been studied with a variety of ground motions with low, medium and high frequency contents to investigate the performance of the semi-active tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active control system modifies structural response more effectively than the classic passive tuned mass damper in both mitigation of maximum displacement and reduction of the settling time of the building.

Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper

  • Sateesh, B.;Maiti, Dipak K.
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.39-56
    • /
    • 2009
  • Vibration is an undesirable phenomenon in a dynamic system like lightly damped aerospace structures and active vibration control has gradually been employed to suppress vibration. The objective of the current investigation is to introduce an active torsional magneto-rheological (MR) fluid based damper for vibration control of a typical nose landing gear. They offer the adaptability of active control devices without requiring the associated large power sources. A torsional damper is designed and developed based on Bingham plastic shear flow model. The numerical analysis is carried out to estimate the damping coefficient and damping force. The designed damper is fabricated and an experimental setup is also established to characterize the damper and these results are compared with the analytical results. A typical FE model of Nose landing gear is developed to study the effectiveness of the damper. Open loop response analysis has been carried out and response levels are monitored at the piston tip of a nose landing gear for various loading conditions without damper and with MR-damper as semi-active device. The closed-loop full state feedback control scheme by the pole-placement technique is also applied to control the landing gear instability of an aircraft.

The controllable fluid dash pot damper performance

  • Samali, Bijan;Widjaja, Joko;Reizes, John
    • Smart Structures and Systems
    • /
    • 제2권3호
    • /
    • pp.209-224
    • /
    • 2006
  • The use of smart dampers to optimally control the response of structures is on the increase. To maximize the potential use of such damper systems, their accurate modeling and assessment of their performance is of vital interest. In this study, the performance of a controllable fluid dashpot damper, in terms of damper forces, damper dynamic range and damping force hysteretic loops, respectively, is studied mathematically. The study employs a damper Bingham-Maxwell (BingMax) model whose mathematical formulation is developed using a Fourier series technique. The technique treats this one-dimensional Navier-Stokes's momentum equation as a linear superposition of initial-boundary value problems (IBVPs): boundary conditions, viscous term, constant Direct Current (DC) induced fluid plug and fluid inertial term. To hold the formulation applicable, the DC current level to the damper is supplied as discrete constants. The formulation and subsequent simulation are validated with experimental results of a commercially available magneto rheological (MR) dashpot damper (Lord model No's RD-1005-3) subjected to a sinusoidal stroke motion using a 'SCHENK' material testing machine in the Materials Laboratory at the University of Technology, Sydney.

Design and Evaluation a Multi-coil Magneto-rheological Damper for Control Vibration of Washing Machine

  • Phu, Do Xuan;Park, Joon Hee;Woo, Jae Kwan;Choi, Seung Bok
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.543-548
    • /
    • 2013
  • 이 논문은 세탁기의 진동제어를 위한 MR 댐퍼의 설계과정을 제시한다. 이 연구에서는 MR 댐퍼의 작은 크기와 함께 높은 댐핑력과 저전력을 소비하도록 설계되었다. MR 댐퍼는 전단모드를 사용하도록 제안되었고 빙햄모델을 이용하여 최설설계를 진행하였다. 이 과정에서 멀티코일이 댐핑력을 높이기 위해 적용되었고 최적화된 구조를 찾아내기 위하여 APDL을 이용하여 최적설계가 수행되었다. 이 후 최적의 수치 값들을 통해 제작하여 실험을 수행하였다. 이 때 슬라이딩모드 제어기를 적용하여 시뮬레이션과 제어실험을 모두 수행하였다. 실험의 결과로부터 MR 댐퍼가 세탁기의 진동제어를 위한 요구 댐핑력을 만족시켜줌을 확인하였다.

  • PDF

차량용 MR충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.