• 제목/요약/키워드: magneto surface acoustic wave

검색결과 5건 처리시간 0.02초

(Fe1-xCox)89Zr11 비정질 자성막에서의 자기표면탄성파 속도변화(II) (Velocity Change of Magneto Surface Acoustic Wave (MSAW) in (Fe1-xCox)89Zr11 Amorphous Films (II))

  • 김상원
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.279-282
    • /
    • 2002
  • The effect of field annealing on the velocity changes of magneto surface acoustic wave (MSAW) devices has been investigated for deposited $(Fe_{1-x}Co_x)_{89}Zr_{11}$ (x = 0~1.0) amorphous films. By means of two step field annealing at $195^{\circ}C$ for 10 minute in the magnetic field of 130 Oe, the MSAW device with x=0.4 film among the devices showed the superior velocity change of 0.1 %. This gigantic value was obtained in the DC bias field of 40 Oe at the exciting frequency of 8.7 MHz. It was confirmed that such behavior was due to the variation of differential permeability caused by an optimal stress within the magnetic film.

$({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$비정질 자성 막에서의 자기표면탄성파 속도변화 (I) (Velocity Change of Magneto Surface Acoustic Wave (MSAW) in $({Fe_{1-x}}{Co_x})_{89}{Zr_{11}}$ Amorphous Films (I))

  • 김상원
    • 한국재료학회지
    • /
    • 제11권6호
    • /
    • pp.477-482
    • /
    • 2001
  • 쐐기형 전극 사이에 열처리전 비정질 ($Fe_{1-x}$ $Co_{x}$ )$_{89}$ $Zr_{ 11}$ (x=0~1.0) 자성막이 증착된 MSAW 소자를 구성하고 외부 인가자기장에 의한 MSAW 속도변화율을 조사하였다. 그 결과 MSAW 속도변화율은 직류 인가자기장, 구동주파수, 자성막의 두께 및 조성에 민감하게 의존하였으며, 특히 구동주파수 및 자성막의 두께가 증가할수록 증가함을 확인하였다. 열처리전 시편에서 나타난 최대 속도변화율은 x=0.8에서 얻어진 0.062%였다.

  • PDF

MHD WAVE ENERGY FLUXES GENERATED FROM CONVECTION ZONES OF LATE TYPE STARS

  • Moon, Yong-Jae;Yun, Hong-Sik
    • 천문학회지
    • /
    • 제24권2호
    • /
    • pp.129-149
    • /
    • 1991
  • An attempt has been made to examine the characteristics of acoustic and MHD waves generated in stellar convection zones($4000\;K\;{\leq}\;T_{eff}\;{\leq}\;7000\;K$, $3\;{\leq}\;\log\;g\;{\leq}\;4.5$). With the use of wave generation theories formulated for acoustic waves by Stein (1967), for MHD body waves by Musielak and Rosner (1987, 1988) and for MHD tube waves by Musielak et al.(l989a, 1989b), the energy fluxes are calculated and their dependence on effective temperature, surface gravity and megnetic field strength are analyzed by optimization techniques. In computing magneto-convection models, the effect of magnetic fields on the efficiency of convection has been taking into account by extrapolating it from Yun's sunspot models(1968; 1970). Our study shows that acoustic wave fluxes are dominant in F and G stars, while the MHD waves dominant in K and M stars, and that the MHD wave fluxes vary as $T_{eff}^4{\sim}T_{eff}^7$ in contrast to the acoustic fluxes, as $T_{eff}^{10}$. The gravity dependence, on the other hand, is found to be relatively weak; the acoustic wave fluxes ${\varpropto}\;g^{-0.5}$, the longitudinal tube wave fluxes ${\varpropto}\;g^{0.3}$ and the transverse tube wave fluxes ${\varpropto}\;g^{0.3}$. In the case of the MHD body waves their gravity dependence is found to be nearly negligible. Finally we assesed the computed energy fluxes by comparing them with the observed fluxes $F_{ob}$ of CIV(${\lambda}1549$) lines and soft X-rays for selected main sequence stars. When we scaled the corrected wave fluxes down to $F_{ob}$, it is found that these slopes are almost in line with each other.

  • PDF