• 제목/요약/키워드: magnetizing fixture

검색결과 16건 처리시간 0.009초

임펄스 착자요크의 열전달 모델링 및 특성 해석 (Heat kTransfer Modeling and Characteristics Analysis of Impulsed Magnetizing Fisture)

  • 백수현;김필수
    • 대한전기학회논문지
    • /
    • 제43권3호
    • /
    • pp.381-387
    • /
    • 1994
  • In this paper, we found the improved SPICE heat transfer modeling of impulsed magnetizing fixture system and investigated temperature characteristics using the proposed model. As the detailed thermal characteristics of magnetizing fixture can be obtained, the efficient design of the impulsed magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important of forecast the characteristics of the magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important to forecast the characteristics of the magnetizing circuits under different conditions. The capacitor voltage was not raised above 810[V] to protect the magnetizing fixture from excessive heating. The purpose of this work is to compute the temperature increasing for different magnetizing conditions. The method uses multi-lumped model with equivalent thermal resistance and thermal capacitance. The reliable results are obtained by using iron core fixture (stator magnet of air cleaner DC motor) coupled to a low-voltage magnetizer(charging voltage : 1000[V], capacitor : 3825[$\mu$F]. The modeling and experimental results are in close aggrement.

  • PDF

온도특성을 고려한 착자회로 및 요크의 특성 해석 (Characteristics Analysis of Magnetizing Circuit and Fixture considering Temperature Characteristic)

  • 백수현;맹인재;김필수;김철진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.82-84
    • /
    • 1993
  • A method for simulating general characteristics and temperature characteristics of magnetizing fixture coil of the capacitor discharge impulse magnetizer-magnetizing fixture system using SPICE is presented. This method has been developed which can aid the design, understanding and inexpensive, time-saving of magnetizing circuit. As the detailed characteristics of magnetizing circuit can be obtained, the efficient design of the magnetizing circuit which produce desired magnet will be possible using our SPICE modeling. Especially, The knowledge of the temperature of the magnetizing fixture is very important to forecast the characteristics of the magnetizing circuits tinder different conditions. The capacitor voltage was not raised above 810[V] to protect the magnetizing fixture from excessive heating. The temperature estimation method uses multi-lumped model with equivalent thermal resistance and thermal capacitance.

  • PDF

SPICE를 이용한 커패시터 방전 임펄스 착자 회로의 특성 해석 (Characteristics Analysis of Capacitor Discharge Impulse Magnetizing Circuit using SPICE)

  • 백수현;김필수
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.206-215
    • /
    • 1994
  • A method for simulating general characteristics and temperature characteristics of discharging SCR of the capacitor discharge impulse magnetizer-magnetizing fixture system using SPICE is presented. This method has been developed which can aid the design, understanding and inexpensive, time-saving of magnetizing circuit. As the detailed characteristic of magnetizing circuit can be obtained, the efficient design of the magntizing circuit which produce desired magnet will be possible using our SPICE modeling. Especially, computation of the temperature rise of discharging SCR is very important since it gives some indication of thermal characteristic of discharging circuit. It is implemented on a 486 personal computer, and the modeling results are checked against experimental measures. The experimental results have been achived using 305[V] and 607[V] charging voltage, low-energy capacitor discharge impulse magnetizer-magnetizing fixture of air cleaner DC motor.

  • PDF

EFFICIENT DESIGN OF CAPACITOR DISCHARGE IMPULSE MAGNETIZER SYSTEM FOR 8-POLE MAGNET

  • Kim, Pill-Soo;Kim, Yong;Baek, Soo-Hyun
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.828-832
    • /
    • 1995
  • This paper describes the efficient design, analysis method and experimental verification of capacitor discharge impulse magnetizer system. A capacitor discharge magnetizer system is used to produce a high current impulse of short duration in this magnetizing fixture. The parasitic resistance and parasitic inductance of the capacitor discharge impulse magnetizer system have been estimated using known air-core test coil. Finite element analysis (using MAXWELL 2-D field simulator) and magnetizing circuit analysis (using SPICE) are also used as part of the design and analysis process of the capacitor discharge impulse magnetizer system. Application study for a magnetizing fixture design is shown. 8-pole magnetizing fixture has been designed and analyzed using finite element analysis. The fixture design for 8-pole magnet are presented along with the experimental results. The experimental results have been achieved using a high-voltage, high-energy capacitor discharge impulse magnetizer and 8-pole iron core fixtures (charging voltage : 2000[V], capacitor bank : 4000[$\mu\textrm{F}$]).

  • PDF

2-D FIELD ANALYSIS OF MAGNETIZING FIXTURE FOR STATOR MAGNET OF AIR-CLEANER DC MOTOR

  • Kim, Pill-Soo;Kim, Yong;Baek, Soo-Hyun
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.833-836
    • /
    • 1995
  • A capacitor discharge impulse magnetizer is used to produce a high current pulse of short duration in a magnetizing fixture for magnets of the various shapes. The problem of designing custom fixtures for magnetization has often been considered more of conventional experience than a scientific theory. Therefore, the design of magnetizingfixture has until recently been a "cut and try" process. It was common to literally blow up one or more fixtures beforeachieving the desired results. Finite element CAD package allow the design of such a fixture. Since magnetizing fixtures come in a variety of sizes and shapes, there is usually no simple analysis method that can be used to estimate the field characteristics of the fixtures. Instead, one typically uses finite element analysis. FEA program MAXWELL is the primary tool used here. The purpose of this study was a examine both theoretically and experimentally the field characteristics inside the fixture. Independent of sizes and shapes of magnetizing fixtures, the desired magnetic field can be obtained with resonable predictability. The experimental results have been achieved using a 1000[V], 22.4[KJ] capacitor discharge magnetizer and iron-core fixtures.

  • PDF

임펄스 착자요크 시스템의 온도특성에 관한 연구 (Temperature Characteristics of Impulsed Magnetizing Fixture System)

  • 백수현;맹인재;김용;김필수;함중걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1098-1100
    • /
    • 1993
  • In this paper, We found the thermal characterstic of impulsed magnetizing fixture system through the SPICE modeling and investigated the applied possibility in application aspects. As the detailed thermal characteristic of magnetizing fixure can be obtained, the efficient design of the magnetizing fixture which produce desired magnet will be possible using our thermal modeling. The purpose of this work is to compute the temperature increasing for different magnetizing conditions. The method uses multi-lumped model with equivalent thermal resistance and thermal capacitance. The model ing and experimental results are in close agreement.

  • PDF

순차적반응표면법을 이용한 착자요크 최적설계 (Optimal Design of Magnetizing Fixture to Reduce Cogging Torque in Brushless DC Motors by Sequential RSM)

  • 황규윤;류세현;권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.828-829
    • /
    • 2008
  • This paper proposes a new pole shaped magnetizing fixture with a non uniform air gap for sinusoidal magnetizing a ring type permanent magnet (PM) to reduce the cogging torque. To obtain more sinusoidal distributed magnetic flux density, the magnetizing fixture's pole shape is optimized by using the sequential response surface method (RSM). And the effects of each design parameter were investigated using the magnetic analysis combined a time stepping finite element method (FEM) with Preisach model. It has been shown, through numerical analysis the optimized modelgives near sinusoidal distributed air gap flux density and drastically reduced cogging torque.

  • PDF

다극 착자용 요크 설계 제작 (Design and Manufaturing of Magnetizing Fixture for Multipolar Magnet)

  • 김철호;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.319-321
    • /
    • 1997
  • This paper deals with multipolar magnetizing process which can exert a considerable influence on the final performance of permanent magnet machine. In combination with impulse discharge magnetizer, the analysis and design of magnetizing fixture using finite element method is required to obtain the accurate characteristics of permanent magnet for small-size step motor. Simulated result of flux density shows good agreement with measured one.

  • PDF

다극 착자용 요크의 재질에 따른 특성해석 (Material Characteristics of Multipolar Magnetizing Fixtures)

  • 김철호;서영택;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.334-336
    • /
    • 1998
  • This paper deals with the problem of the magnetizing yoke fixture. The experimental test has been performed using the yoke fixture made of bakelite as well as ferromagnetic. The magnetizing current is the most essential criterial factor for delivering the impulse energy to the magnetized material, i.e ferrite core. The yoke of nonferromagnetic has shown its better performance in experimental results as well as in the finite element analysis.

  • PDF

영구자석 매입형 유도동기전동기의 조립 후 착자에 대한 연rn (Study in Post-Assembly Magnetization of Line Start Permanent Magnet Motor)

  • 이철규;권병일
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권8호
    • /
    • pp.373-380
    • /
    • 2003
  • This paper consists of a study in post-assembly magnetization of LSPM (Line Start Permanent Magnet Motor). Recently, LSPM is noted as an alternative to the induction motor because it offers a very high efficiency and unity power factor, And it is necessary for permanent magnets to be magnetized by means of post-assembly magnetization in LSPMS because of the manufacturing cost involved. The manufacturing process is also simpler in post-assembly magnetization than in pre-assembly magnetization. Generally, permanent magnet motors are magnetized by their own stator coil or by magnetizing fixtures. However, the permanent magnet in a LSPM is scarcely magnetized by using them because of the eddy current of the rotor bar. Hence, it is necessary to design a magnetizing fixture that overcomes this problem. In this paper, the author analyses the post-assembly magnetization of a LSPM and proposes a method for designing the magnetizing fixture. The method that the author proposes is to make the number of coil turns greater in order to reduce the effect of the eddy current of the rotor bars.