• Title/Summary/Keyword: magnetization switching

Search Result 74, Processing Time 0.017 seconds

Computer Simulation of Switching Characteristics and Magnetization Flop in Magnetic Tunnel Junctions Exchange Biased by Synthetic Antiferromagnets

  • Lim, S.H.;Uhm, Y.R.
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.132-141
    • /
    • 2001
  • The switching characteristics and the magnetization-flop behavior in magnetic tunnel junctions exchange biased by synthetic antiferromagnets (SyAFs) are investigated by using a computer simulations based on a single-domain multilayer model. The bias field acting on the free layer is found to be sensitive to the thickness of neighboring layers, and the thickness dependence of the bias field is greater at smaller cell dimensions due to larger magnetostatic interactions. The resistance to magnetization flop increases with decreasing cell size due to increased shape anisotropy. When the cell dimensions are small and the synthetic antiferromagnet is weakly, or not pinned, the magnetization directions of the two layers sandwiching the insulating layer are aligned antiparallel due to a strong magnetostatic interaction, resulting in an abnormal magneto resistance (MR) change from the high-MR state to zero, irrespective of the direction of the free-layer switching. The threshold field for magnetization-flop is found to increase linearly with increasing antiferromagnetic exchange coupling in the synthetic antiferromagnet. Irrespective of the magnetic parameters and cell sizes, magnetization flop does not exist near zero applied field, indicating that magnetization flop is driven by the Zeeman energy.

  • PDF

Effect of Magnetic Property Modification on Current-Induced Magnetization Switching with Perpendicular Magnetic Layers and Polarization-Enhancement Layers

  • Kim, Woo-Jin;Lee, Kyung-Jin;Lee, Taek-Dong
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.104-107
    • /
    • 2009
  • The effects of the magnetic property variation on current-induced magnetization switching in magnetic tunnel junction with perpendicular magnetic anistoropy (PMA) and the soft magnetic polarization-enhancement layers (PELs) inserted between the layers with PMA and the MgO layer was studied. A micromatnetic model was used to estimate the switching time of the free layer by different applied current densities, with changing saturation magnetization ($M_s$) of the PELs, interlayer exchange coupling between PMA layers and PELs. The switching time could be significantly reduced at low current densities, by increasing $M_s$ of PELs and decreasing interlayer exchange coupling.

Improvement of the Spin Transfer Induced Switching Effect by Copper and Ruthenium Buffer Layer

  • Nguyen T. Hoang Yen;Yi, Hyun-Jung;Joo, Sung-Jung;Jung, Myung-Hwa;Shin, Kyung-Ho
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.48-51
    • /
    • 2005
  • The spin transfer induced magnetization switching has been reported to occur in magnetic multilayer structures whose scope usually consists of one stack of ferromagnetic / non-ferromagnetic / ferromagnetic (F / N / F) materials. In this work, it is shown that: 1) Copper used as a buffer layer between the free Co and the Au cap-layer can clearly increase the probability to get the spin transfer induced magnetization switching in a simple spin valve Co 11 / Cu 6/ Co 2 (nm); 2) Furthermore, when Ruthenium is simultaneously applied as a buffer layer on the Si-substrate, the critical switching currents can be reduced by $30\%$, and the absolute resistance change delta R $[{\Delta}R]$ of that stack can be enlarged by $35\%$. The enhancement of the spin transfer induced magnetization switching can be ascribed to a lower local stress in the thin Co layer caused by a better lattice match between Co and Cu and the smoothening effect of Ru on the thick Co layer.

Nonequilibrium Domain Configurations Undergoing Large Angle Rotations in Mesoscopic Magnetic Thin Film Elements (retracted)

  • Choi, B.C.;Hong, Y.K.;Rudge J.;Donohoe G.;Xiao Q.F.
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.61-65
    • /
    • 2006
  • The physical origin of complex dynamic domain configuration in nonequilibrium magnetic systems with mesoscopic length scales has been studied. An increasing complexity in the spatial feature of the evolution is found to accompany the increasing reversal speed, when a ferromagnetic element is driven by progressively faster switching fields applied antiparallel to the initial magnetization direction. As reversal rates approach the characteristic precession frequencies of spin fluctuations, the thermal energy can boost the magnetization into local configurations which are completely different from those experienced during quasistatic reversal. The sensitive dependence of the spatial pattern on switching speed can be understood in terms of a dynamic exchange interaction of thermally excited spins; the coherent modulation of the spins is strongly dependent on the rise time of switching pulses.

High Resolution Magnetic X-ray Microscopy Study of the Magnetization Reversal in CoCrPt Alloy Thin Films

  • Im, Mi-Young;Fischer, Peter;Eimiiller, Thomas;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.9 no.3
    • /
    • pp.75-78
    • /
    • 2004
  • Magnetic transmission soft X-ray microscopy has been used to study element-specifically the magnetization reversal behavior of ${(Co_{84}Cr_{16})}_{87}Pt_{l3}$ alloy thin films with a lateral resolution of 35 nm. Our results indicate that the magnetization switching is carried out by a random nucleation process that can be attributed to the reversal of individual grains. We found evidence of a large distribution of the switching fields at the nanogranular length scale, which has to be considered seriously for applications of CoCrPt systems as magnetic high density storage materials.

Magnetization reversal process of the nanosized elliptical permalloy magnetic dots with various aspect ratios

  • Lee, J. H.;K. H. Oh;Kim, K. Y.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.186-187
    • /
    • 2002
  • Recently, there has been much interest in magnetic thin film patterned in submicron scale because of possible ultrahigh density storage media or logical device applications [1-3]. Various geometries such as rectangle, circle, ring and ellipse type dots have been studied to find the shape showing stable switching behavior from repeated cycles. However, rectangle and circle types may not be suitable for device applications because they have two uncontrollable different magnetization reversal modes: C state and S state, resulting in different coercivity and irreproducible switching[4]. (omitted)

  • PDF

Effect of Energy Barrier Distribution on Current-Induced Magnetization Switching with Short Current Pulses (짧은 전류 펄스를 이용한 전류 유도 자화 반전에서 에너지 장벽 분포의 효과)

  • Kim, Woo-Yeong;Lee, Kyung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.48-51
    • /
    • 2011
  • We performed macro-spin simulation studies of the current-induced magnetization reversal of nanomagnetic elements with short current pulses. A special attention was paid to the effect of the energy barrier on the switching current distribution. The switching current and its distribution increase with decreasing the current pulse-width. The relationship between the energy barrier and switching current distribution is described by the Arrhenius-N$\'{e}$el law at a long pulse-width regime. At a regime of short pulse-width, however, the relationship is left unaddressed. The difficulty to address this issue arises because the magnetization switching with a short current pulse is governed not by the thermal activation but by the precession motion. Therefore, an exact formulation for the short pulse regime by solving the Fokker-Plank equation is needed to understand the result.

Suppression of Magnetization Ringing After Domain Wall Collision Studied by Micromagnetic Simulation

  • Djuhana, Dede;Piao, Hong-Guang;Lee, Sang-Hyuk;Jun, Su-Hyeong;Shim, Je-Ho;Kim, Dong-Hyun
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.120-123
    • /
    • 2008
  • Magnetization ringing following domain wall collision on a ferromagnetic nanowire has been investigated by micromagnetic simulation. Suppressed magnetization ringing is observed with the introduction of a small ribbon to the nanowire. Magnetization ringing has been analyzed in a frequency space by a fast Fourier transform. With the introduction of a small ribbon and/or taping of the wire, the amplitude of ringing is reduced with a shifted frequency peak.

Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines

  • Yang, Gongde;Fu, Xinghe;Lin, Mingyao;Li, Nian;Li, Hao
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.158-167
    • /
    • 2019
  • This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.

Magnetization Reversal Behavior of Submicron-sized Magnetic Films in Response to Sub-ns Longitudinal Field Pulses Along the Easy Axis (1 ns 이하의 자화 용이축 펄스 자기장에 의한 자성박막의 자화 반전 거동)

  • Lee, Jin-Won;Han, Yoon-Sung;Lee, Sang-Ho;Hong, Jong-Ill
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.188-193
    • /
    • 2007
  • We simulated the magnetization reversal behavior of submicron-thickness magnetic films by applying pulses of sub-ns-long durations and amplitudes along the easy axis. The films were rectangular and elliptical $Ni_{80}Fe_{20}$, and their thickness was 2 nm and 4 nm. We observed different behaviors depending upon the shape and thickness of the films and found a normal non-switching in regions in which we expected complete switching after relaxation. In the elliptical film, the non-switching regions were found to be random and to be widely distributed throughout the switching map. The strong demagnetization field along the z-axis, the film thickness direction, is likely responsible for this abnormal behavior. In the rectangular film, the abnormal non-switching regions were less distributed than they were in the elliptical film due to edge domains resulting from the small $M_z$ or demagnetization field during the switching. Our simulation confirms that large demagnetization is detrimental to the ultra-fast magnetization reversal of magnetic ultra-thin films.