• Title/Summary/Keyword: magnetics fields

Search Result 195, Processing Time 0.028 seconds

Temperature Dependence of Magnetostatic Waves on the YIG Single Crystalline Thin Film (YIG 단결정 박막에 대한 정자파의 온도의존성 연구)

  • Lee, Soo-Hyung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.163-167
    • /
    • 2002
  • In order to study the temperature dependence of the magnetostatic wave modes for an YIG thin film, grown by a liquid phase epitaxy method, The ferromagnetic resonance was performed by an FMR spectrometer in the temperature range -140$\^{C}$∼200$\^{C}$. The magnetostatic surface wave and backward volume wave modes show periodic excitations in parallel configuration. The resonance fields of all modes and intensities decreased with decreasing the temperature. All magnetostatic modes can be well explained by the Walker and Damon-Eshbach theory. The calculated saturation magnetization Ms of the YIG thin film was increased with decreasing the temperature. The line widths of magnetostatic modes changed in various trends with decreasing the temperature.

Nonmagnetic Impurity Effect in $CuF_{2}.2H_{2}O$ ($CuF_{2}.2H_{2}O$에서의 비자성 불순물 효과)

  • Chang Hoon Lee;Cheol Eui Lee
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.2
    • /
    • pp.119-122
    • /
    • 1995
  • We have measured the magnetic susceptibilities of a CuF/sub 2/ .center dot. 2H/sub 2/O sample by means of the SQUID(superconducting quantum interference device) at the magnetic fields of 0.5 T and 1 mT, in the temperature range 5-300 K. The sample was found to contain some nonmagnetic calcium and magnesium impurities by the elemental analysis. Our measurements differ from known results for pure Cu F/sub 2/ .center dot. 2H/sub 2/O and are well explained by the effect of the nonmagnetic impurities in our sample. The purity of our sample derived from the temperature dependence of the susceptibilities was compared with that from the elemental analysis.

  • PDF

Numerical Method for Exposure Assessment of Wireless Power Transmission under Low-Frequency Band

  • Kim, Minhyuk;Park, SangWook;Jung, Hyun-Kyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.442-449
    • /
    • 2016
  • In this paper, an effective numerical analysis method is proposed for calculating dosimetry of the wireless power transfer system operating low-frequency ranges. The finite-difference time-domain (FDTD) method is widely used to analyze bio-electromagnetic field problems, which require high resolution, such as a heterogeneous whole-body voxel human model. However, applying the standard method in the low-frequency band incurs an inordinate number of time steps. We overcome this problem by proposing a modified finite-difference time-domain method which utilizes a quasi-static approximation with the surface equivalence theorem. The analysis results of the simple model by using proposed method are in good agreement with those from a commercial electromagnetic simulator. A simulation of the induced electric fields in a human head voxel model exposed to a wireless power transmission system provides a realistic example of an application of the proposed method. The simulation results of the realistic human model with the proposed method are verified by comparing it with the conventional FDTD method.

Computer Simulation of Sensing Current Effects on the Magnetic and Magnetoresistance Properties of a Crossed Spin-Valve Read

  • Lim, S.H;Han, S.H;Shin, K.H;Kim, H.J
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.44-49
    • /
    • 2000
  • Computer simulation of sensing current effects on the magnetic and magnetoresistance properties of a crossed spin-valve head is carried out. The spin-valve head has the following layer structure: Ta (8.0 nm)/NiMn (25 nm)/NiFe (2.5 nm)/Cu (3.0 nm)/NiFe (5.5 nm)/Ta (3.0 nm), and it is 1500 nm long and 600 nm wide. Even with a high pinning field of 300 Oe and a high hard-biased field of 50 Oe, the ideal crossed spin-valve structure, which is essential to the symmetry of the output signal and hence high density recording, is not realized mainly due to large interlayer magnetostatic interactions. This problem is solved by applying a suitable magnitude of sensing currents along the length direction generating magnetic fields in the width direction. The ideal spin-valve head is expected to show good symmetry of the output signal. This has not been shown explicitly in the present simulation, however, The reason for this is possibly related to the simple assumption used in this calculation that each magnetic layer consists of a single domain.

  • PDF

Dependence of Magneto-Impedence on Magnetizing Angle from Amorphous $Co_{66}Fe_4NiB_{14}Si_{15}$ Ribbon Axis (자화방향에 따른 비정질 $Co_{66}Fe_4NiB_{14}Si_{15}$ 리본의 자기임피던스 효과)

  • 유권상;김철기;윤석수;양재석;손대락
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.134-139
    • /
    • 1997
  • Magneto-impedence (MI) were measured in amorphous $Co_{66}Fe_4NiB_{14} Si_{15}$ ribbons at 100 kHz as a function of the angle from ribbon axis. The samples were prepared using etching method, with the angle deviated from ribbon axis, 0$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, 60$^{\circ}$ and 90$^{\circ}$. The MI measured in 60$^{\circ}$ sample increased with the increasing magnetic fields. The dip in profile appears at H = 0 above the angle of 30$^{\circ}$. The maximum values of MI and their dips are increased with the cutting angle, but the maximum value of MI decreased at 90$^{\circ}$. The increase of MI with the angle was analyzed in terms of the transverse magnetic permeability.

  • PDF

Magnetoresistance Effect of Ta/NiFe/Cu/Co Pseudo Spin Valve Structure (Ta/NiFe/Cu/Co Pseudo 스핀밸브 구조의 자기저항 효과)

  • Joo, Ho-Wan;Choi, Jin-Hyup;Choi, Sang-Dae;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.25-28
    • /
    • 2004
  • The dependence of sensitivity, MR ratio, coercivity (Hc) and switching fields as a function of thickness of each magnetic layers(Co, NiFe and Cu) were investigated in pseudo spin valves with a structure of Ta/NiFe/Cu/Co. As measured results dependence of the thickness of each magnetic layer, we obtained MR ratio of 7.26% for Ta(4 nm)/NiFe(7.5 nm)/Cu(3 nm)/Co(5 nm) pseudo spin valves. Also, we could control properties of magnetoresistance for independent magnetization courses of each magnetic layer. Especially, we found that we could control coercivity as constant MR ratio dependence of Co thickness.

Study on the Coercive Field Strenght Noise Depends on The Magnetic Field Annealing Effect of Amorphous Ribbon (비정질 리본의 자기장중 열처리에 의한 보자력 노이즈의 변화에 관한 연구)

  • 최근화;손대락
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.150-153
    • /
    • 1994
  • Magnetic field annealing method has been used to obtain proper hysteresis loop shapes which are useful to a device using amorphous ribbon. In this study, two pairs of Helmhotz coils were used to apply longitudinal and transverse magnetic field during annealing. For the measurement of coercive field strength noise which depends on magnetic field annealing, Co-based amorphous alloy ribbon $VITROVAC^{\circledR}$ 6030 was used. For the sample which was annealed under dc transverse and dc longitudinal magnetic field, coercive field strength noise was nearly independent of magnetizing frequency ranging from 1 to 100 kHz, but dc transverse and ac longitudinal magnetic fields annealed samples show that the coercive field strength noise decreased in power of magnetizing frequency. When magnetic domain nucleation occurred, the coercive field strength noise increased remarkably and decreased in power of magnetizing frequency.

  • PDF

Thermal Stability of Nanostructured Synthetic Ferrimagnets under Applied Magnetic Fields in the 45˚ Direction

  • Han, C.W.;Han, J.K.;Lim, S.H.
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.116-122
    • /
    • 2010
  • An accurate analytical equation for the total energy in the framework of the single domain model is used to study the thermal stability of nanostructured synthetic ferrimagnets. Elliptical cells are considered that have lateral dimensions of 160 nm (long axis)$\times$80 nm (short axis) and varying values of thickness asymmetry for the two magnetic layers. The direction of the applied magnetic field, which points to the $45^{\circ}$ direction, is in the opposite direction to the thicker layer magnetization. A significant difference is observed in the applied magnetic field dependencies of the equilibrium magnetic configuration and the magnetic energy barrier when using the simplifying assumption that the self-demagnetizing field is identical in magnitude to the dipole field. At a small thickness asymmetry of 0.2 nm, for example, the magnetic energy barrier is reduced from 68 kT (T=300 K) to 6 kT at the remanent state and a progressive switching behavior changes into a critical behavior, as the simplifying assumption is used. The present results clearly demonstrate the need for an accurate analytical equation for the total energy in predicting the thermal stability of nanostructured synthetic ferrimagnets.

Generation of n Precision Magnetic Filed Using Electromagnet and NMR Magnetometer (전자석과 핵자기공명 자장측정기를 이용한 정밀자장의 발생)

  • Kim, Young-Gyun;Park, Po-Gyu;Park, Jeong-Kwon
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.137-142
    • /
    • 2002
  • A precision magnetic field was generated by the NMR magnetometer and electromagnet system. The current and field feedback systems are used to control of magnetic field in the electromagnet using computer. Stability of magnetic field according to results that compare field and current feedback, current method is better than 2 times. The stability of magnetic field with current feedback improved 10 times compared with no feedback. This system is used for the calibration of magnetometers and the testing related to magnetic fields.

Self Compensating Flux-gate Magnetometer Using Microcomputer (마이크로컴퓨터를 이용한 자체 보상형 flux-gate 마그네토미터제작)

  • Ga, E.M.;Son, D.;Son, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.149-153
    • /
    • 2002
  • Flux-gate magnetometer has been still used for low field magnetic field measurement with portability, low power consumption, and high reliability. In many applications, flux-gate magnetometer measures not absolute values but changes of the earth magnetic field. For the eia magnetic field change measurements, we have constructed a high sensitive 3-axis flux-gate magnetometer of which measuring ranges is ${\pm}$1000 nT and noise level is 5pT/√㎐ at 1 ㎐. Using this magnetometer, we can compensate the earth magnetic field of ${\pm}$50,000 nT with successive approximation methods using microcomputer. After earth magnetic field compensation, we could measure earth magnetic field changes with ${\pm}$100 nT measuring ranges.