• Title/Summary/Keyword: magnetic scale model

Search Result 108, Processing Time 0.033 seconds

A Study on Optimal Size Evaluation Model for Large Scale SMES System (저장용 초전도 에너지 저장장치의 최적규모 산정을 위한 투자모형 수립에 관한 연구)

  • 김정훈;김주락;장승찬;임재윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.215-222
    • /
    • 1999
  • Integrating energy storage into electlic power system has long been recognized as a way to maximize a utility's g generation and transmission capacity, Electlic power can be stored during off-peak periods and then recovered during p peak conditions to offset the need for larger generation and transmission capacity, Currently large-scale SMES for the p purpose of energystorage which can be also se$\pi$ed by battery storage or flywheel system has been developed, and near f future it will be integrated into power grids, This paper presents an investment analysis on large-scale SMES which c can determine its optimal size in power systems, In operation model. least generation cost for energy storage in SMES a and its mar밍nal capacity cost can be calculated using the discreteness of probability distribution for power availability I Investment decisions are made by the maximum p디nciple and the case study shows the optimal operation and realistic i information on the proper size of large-scale SMES in power systems.

  • PDF

Interferometric Monitoring of Gamma-ray Bright AGNs: S5 0716+714

  • Lee, Sang-Sung;Lee, Jee Won;Hodgson, Heffrey A.;Kim, Dae-Won;Algaba, Juan-Carlos;Kang, Sincheol;Kang, Jiman;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.28.3-29
    • /
    • 2017
  • We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, which are part of the KVN key science program known as the Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA). Multi-frequency VLBI observations were conducted in 29 sessions from January 16, 2013 to March 1, 2016. The source was detected and imaged in all available frequency bands. For all observed epochs, the source is compact on the milliarcsecond (mas) scale, yielding a compact VLBI core dominating the synchrotron emission on the mas scale. Based on the multi-wavelength data at 15 and 230 GHz, we found that the source shows multiple prominent enhancements of the flux density at the centimeter (cm) and millimeter (mm) wavelengths, with mm enhancements leading cm enhancements with a time lag of $18{\pm}5$ days. Turnover frequency is found to vary over our observations between 22 to 69GHz. Taking into account the synchrotron self-absorption model of the relativistic jet in S5 0716+714, we estimated the magnetic field strength in the mas emission region to be 0.4-66 mG during the observing period, finding that the magnetic field strength is strongly correlated with the turnover frequency and the relatively strong magnetic field (e.g., B > 40 mG) is correlated with flux enhancements at mm wavelengths (e.g., 86 GHz).

  • PDF

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Iron Nuclei

  • Ryu, Dongsu;Kang, Hyesung;Das, Santabrata
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2012
  • We have studied how the intergalactic magnetic field (IGMF) affects the propagation of super-GZK iron nuclei that originate from extragalactic sources within the local GZK sphere. Toward this end, we set up hypothetical sources of ultra-high-energy cosmic-rays (UHECRs), virtual observers, and the magnetized cosmic web in a model universe constructed from cosmological structure formation simulations. We then arranged a set of reference objects at high density region to represent astronomical objects formed in the large scale structure (LSS). With our model IGMF, the paths of UHE iron nuclei are deflected on average by about 70 degrees, which might indicate a nearly isotropic distribution of arrival directions. However, the separation angle between the arrival directions and the nearest reference object on the LSS is only ~6 degrees, which is twice the mean distance to the nearest neighbors among the reference objects. This means that the positional correlation of observed UHE iron events with their true sources would be erased by the IGMF, but the correlation with the LSS itself is to be sustained. We discuss implications of our findings for correlations studies of real UHECR events.

  • PDF

Precision Measurement System forBall Screw Pitch Error (볼스크류 전구간 피치오차 측정시스템)

  • 박희재;김인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.279-285
    • /
    • 1993
  • This paper presents a precision automatic measuring system for ball screw Pitch. Ball screw is mounted on a precision indexing table, and the ball screw pitch is measured via magnetic scale, where the indexing and measurement are performed by a PC. For precision indexing of ball screw, direct driven motor is coupled to the designed dead and live centers; the performance of the centers are assessed with a precision master sylinder,such as radial motion,tilt motion, and axial motions. An error compensation model is constructed for the measurement system of ball screw pitch, where the error motions of indexing system as well as the scale measurement system are combined to give the measurement error for the ball screw. The developed system proposes an automated precision measurement system for manufacturers and users of ball screw.

  • PDF

Effects of triaxial magnetic field on the anisotropic nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.361-374
    • /
    • 2017
  • In this study, the influences of triaxial magnetic field on the wave propagation behavior of anisotropic nanoplates are studied. In order to include small scale effects, nonlocal strain gradient theory has been implemented. To study the nanoplate as a continuum model, the three-dimensional elasticity theory is adopted in Cartesian coordinate. In our study, all the elastic constants are considered and assumed to be the functions of (x, y, z), so all kind of anisotropic structures such as hexagonal and trigonal materials can be modeled, too. Moreover, all types of functionally graded structures can be investigated. eigenvalue method is employed and analytical solutions for the wave propagation are obtained. To justify our methodology, our results for the wave propagation of isotropic nanoplates are compared with the results available in the literature and great agreement is achieved. Five different types of anisotropic structures are investigated in present paper and then the influences of wave number, material properties, nonlocal and gradient parameter and uniaxial, biaxial and triaxial magnetic field on the wave propagation analysis of anisotropic nanoplates are presented. From the best knowledge of authors, it is the first time that three-dimensional elasticity theory and nonlocal strain gradient theory are used together with no approximation to derive the governing equations. Moreover, up to now, the effects of triaxial magnetic field have not been studied with considering size effects in nanoplates. According to the lack of any common approximations in the displacement field or in elastic constant, present theory has the potential to be used as a bench mark for future works.

Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory

  • Mehrez, Sadok;Karati, Saeed Ali;DolatAbadi, Parnia Taheri;Shah, S.N.R.;Azam, Sikander;Khorami, Majid;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.221-235
    • /
    • 2020
  • The following composition establishes a nonlocal strain gradient plate model that is essentially related to mass sensors laying on Winkler-Pasternak medium for the vibrational analysis from graphene sheets. To achieve a seemingly accurate study of graphene sheets, the posited theorem actually accommodates two parameters of scale in relation to the gradient of the strain as well as non-local results. Model graphene sheets are known to have double variant shear deformation plate theory without factors from shear correction. By using the principle of Hamilton, to acquire the governing equations of a non-local strain gradient graphene layer on an elastic substrate, Galerkin's method is therefore used to explicate the equations that govern various partition conditions. The influence of diverse factors like the magnetic field as well as the elastic foundation on graphene sheet's vibration characteristics, the number of nanoparticles, nonlocal parameter, nanoparticle mass as well as the length scale parameter had been evaluated.

The Effect of Repetitive Magnetic Stimulation in an SCI Rat Model with Stem Cell Transplantation (줄기세포를 이식한 척수손상 흰쥐에서 반복자기자극의 효과)

  • Bae, Young-Kyung;Park, Hea-Woon;Cho, Yun-Woo;Kim, Su-Jeong;Lee, Joon-Ha;Kwon, Jung-Gu;Ahn, Sang-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.67-73
    • /
    • 2010
  • Purpose: We tested whether repetitive transcranial magnetic stimulation (rTMS) improved recovery following spinal cord injury (SCI) in rats with transplantation of adipose tissue-derived stromal cells (ATSCs). Methods: Twenty Sprague-Dawley rats (200-250 g, female) were used. Moderate spinal cord injury was induced at the T9 level by a New York University (NYU) impactor. The rat ATSCs (approximately $5{\times}10^5$ cells) were injected into the perilesional area at 9 days after SCI. Starting four days after transplantation, rTMS (25 Hz, 0.1 Tesla, pulse width=$370{\mu}s$, on/off time=3 sec/3 sec) was applied daily for 7 weeks. Functional recovery was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale as well as pain responses for thermal and cold stimuli. Results: Both groups showed similar, gradual improvement of locomotor function. rTMS stimulation decreased thermal and cold hyperalgesia after 7 weeks, but sham stimulation did not. Conclusion: rTMS after transplantation of ATSCs in an SCI model may reduce thermal hyperalgesia and cold allodynia, and may be an adjuvant therapeutic tool for pain control after stem cell therapy in SCI.

Faraday Rotation Measure in the Large Scale Structure III

  • Akahori, Takuya;Ryu, Dong-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • The nature and origin of the intergalactic magnetic field (IGMF) are an outstanding problem of cosmology, yet they are not well understood. Measuring Faraday rotation (RM) is one of a few promising methods to explore the IGMF. We have theoretically investigated RM using a model of the IGMF based on a MHD turbulence dynamo (Ryu et al. 2008; Cho et al. 2009). In the previous KAS meeting, we reported the results for the present-day local universe; for instance, the probability distribution function (PDF) of ${\mid}RM{\mid}$ follows the lognormal distribution, the root mean square (rms) value for filaments is ~1 rad m^{-2}, and the power spectrum peaks at ~1 h^{-1} Mpc scale. In this talk, we extend our study of RM; by stacking simulation data up to redshift z=5 and taking account of the redshift distribution of radio sources, we have reproduced an observable view of RM through filaments against background radio sources. Our findings are as follows. The inducement of RM is a random walk process, so that the rms of RM increases with increasing path length. The rms value of RM for filaments reaches several rad m^{-2}. The PDF still follows the lognormal distribution, and the power spectrum of RM peaks at less than degree scale. Our predictions of RM could be tested, for instance, with LOFAR, ASKAP, MEERKAT, and SKA.

  • PDF

Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes

  • Ebrahimi, Farzad;Dehghan, M.;Seyfi, Ali
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • In this article, wave propagation characteristics in magneto-electro-elastic (MEE) nanotube considering shell model is studied in the framework nonlocal theory. To account for the small-scale effects, the Eringen's nonlocal elasticity theory of is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton's principle. The results of this investigation have been accredited by comparing them of previous studies. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influences of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation responses of MEE nanotube are expressed in detail.

Critical multi-field load analysis of the piezoelectric/piezomagnetic microplates as an application in sports equipment

  • Yi Zhu
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.485-493
    • /
    • 2023
  • Critical multi-field loads and free vibration responses of the sandwich piezoelectric/piezomagnetic microplate subjected to combination of magnetoelectromechanical loads based on a thickness-stretched higher order shear deformable model using Hamilton's principle. The lateral displacement is assumed summation of bending, shearing and stretching functions. The elasti core is sandwiched by a couple of piezoelectric/piezomagnetic face-sheets subjected to electromagnetocmechanical loads. The work of external force is calculated with considering the in-plane mechanical, electrical and magnetic loads based on piezomagnetoelasticity relations. The critical multi field loading and natural frequency analysis are performed to investigate influence of geometric and loading parameters on the responses. A verification is performed for justification of the numerical results.