• 제목/요약/키워드: magnetic powder size

검색결과 197건 처리시간 0.024초

사출성형용 컴파운드의 유연학적 특성에 미치는 SH-CO 계 분말의 입도 영향 (Effect of Powder Size on the Rheological Characteristics of Sm-Co Type Compound for Powder Injection Molding)

  • 정우상;김윤배;정원용
    • 한국자기학회지
    • /
    • 제11권4호
    • /
    • pp.157-162
    • /
    • 2001
  • Sm-Co계 플라스틱 자석 제조를 위한 사출 성형용 컴 파운드의 제조법을 연구하기 위해 미세분말과 조대분말을 혼합하여 자성분말의 입도 변화, 배합비 및 부피분율에 따른 컴파운드의 유변학적 특성을 조사하였다. 조대분말의 평균입도가 증가하면 분말의 충진율이 증가하여 컴파운드의 점도가 감소하였다. 그러나 미세분말의 평균입도가 작아지는 경우, 미세분말들간의 응집성으로 인하여 오히려 점도가 증가하였다. 기계적으로 분쇄된 Sm-Co계 분말의 경우, 125~75 $\mu\textrm{m}$ 크기의 조대분말과 평균입도 4.9 $\mu\textrm{m}$인 미세분말을 혼합하여 제조된 컴파운드의 점도는 분말의 배합비에 의존하며 조대분말을 60%혼합한 경우 가장 낮은 점도를 나타냈다. 이는조대분말의 양이 60 %일 때 자성분말의 충진율이 최대가 됨을 의미한다. 자성분말의 부피분율에 따른 컴파운드의 점도는 유변학적 모델을 잘 만족시켰으며 사출 성형이 가능한 Sm-Co계 자성분말의 최대 부피분율은 약 66 %이었다.

  • PDF

나노 구조 Fe-Co 합금분말의 제조 및 자성특성 (Fabrication and Magnetic Properties of Nanostructured Fe-Co Alloy Powder)

  • 이백희;안봉수;김대건;김영도
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.182-188
    • /
    • 2002
  • Conventional Fe-Co alloys are important soft magnetic materials that have been widely used in industry. Compared to its polycrystalline counterpart, the nanostructured materials have showed superior magnetic properties, such as higher permeability and lower coercivity due to the single domain configuration. However, magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. In the present work, starting with two powder mixtures of Fe and Co produced by mechanical alloying (MA) and hydrogen reduction process (HRP), differences in the preparation process and in the resulting microstructural characteristics will be described for the nano-sized Fe-Co alloy particles. Moreover, we discuss the effect of the microstructure such as crystal structure and grain size of Fe-Co alloys on the magnetic properties.

분말 특성에 따른 자기연마에 의한 Deburring성능분석 (Analysis of the Performance of Magnetic Abrasive Deburring according to Powder Characteristics)

  • 채종원;고성림
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.37-43
    • /
    • 2004
  • The performance of magnetic abrasive finishing fur surface is evaluated by the characteristic curve. The characteristic curve is generated by experiment in surface finishing. For experiment, new magnetic inductor is designed and manufactured. 15 kinds of powders are provided to find the relationship between powder characteristic and finishing performance. As powder, Fe-TiC. Polymer-TiC and Fe-NbC are used with different size. The size of abrasives and location are also important factor for the performance. From characteristic curve, two index are obtained, which specify the initial finishing performance and endurance of finishing performance. It is proved that the performance index can be applied to select proper powder for efficient deburring. It is shown that the characteristic curve can be used as good tools for evaluating powder performance in surface finishing and deburring.

Fabrication of Nanostructured Fe-Co Alloy Powders by Hydrogen Reduction and its Magnetic Properties

  • Lee, Young-Jung;Lee, Baek-Hee;Kim, Gil-Su;Lee, Kyu-Hwan;Kim, Young-Do
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.120-121
    • /
    • 2006
  • Magnetic properties of nanostructured materials are affected by the microstructures such as grain size (or particle size), internal strain and crystal structure. Thus, it is necessary to study the synthesis of nanostructured materials to make significant improvements in their magnetic properties. In this study, nanostructured Fe-20at.%Co and Fe-50at.%Co alloy powders were prepared by hydrogen reduction from the two oxide powder mixtures, $Fe_2O_3$ and $Co_3O_4$. Furthermore, the effect of microstructure on the magnetic properties of hydrogen reduced Fe-Co alloy powders was examined using XRD, SEM, TEM, and VSM.

  • PDF

Effects of Crystal Grain Size and Particle Size on Core Loss For Fe-Si Compressed Cores

  • Takemoto, Satoshi;Saito, Takanobu
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1183-1184
    • /
    • 2006
  • Core loss of soft magnetic powder cores have been focused on to achieve high efficiency of power supplies. In this study the effects of crystal grain size on core loss were investigated by changing heat treatment conditions. It was found that core loss is influenced by crystal grain size because eddy current loss decreased and hysteresis loss increased by making crystal grain size smaller, and it is also influenced by particle size.

  • PDF

FeSiCr 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 자성분말 입도의 영향 (Effects of Magnetic Powder Size on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets)

  • 노태환;김주범
    • 대한금속재료학회지
    • /
    • 제46권1호
    • /
    • pp.44-51
    • /
    • 2008
  • The effects of magnetic powder size on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr(wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The composite sheet including small magnetic flakes with the size less than $26{\mu}m$ exhibited high power loss in the GHz frequency range as compared with the sheets having large alloy flakes of $45{\sim}75{\mu}m$. Moreover, both the complex permeability and the loss factor increased with the decrease in size of the alloy flakes. The large power loss of the sheets containing small magnetic flakes was attributed to the high complex permeability, especially their imaginary part. The high complex permeability of the sheets composed of small flakes was considered to be due to the highly thin shape of the flakes inducing low eddy-current loss.

Improved Magnetic Properties of Silicon-Iron Alloy Powder Core

  • Lee, Tae-Kyung;Kim, Gu-Hyun;Choi, Gwang-Bo;Jeong, In-Bum;Kim, Kwang-Youn;Jang, Pyung-Woo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1191-1192
    • /
    • 2006
  • Eventhough Fe-6.5 wt.% Si alloy shows excellent magnetic properties, magnetic components made of the alloy are not totally because of its extremely low ductility. In order to overcome this demerit of alloy, 6.7 wt.% Si alloy powders were produced by gas atomization and then post-processed to form magnetic cores. By doing so, the total core loss could be minimized by reducing both hysteresis and eddy current loss. From our experiments, we were able to achive a core loss of $390mW/cm^3$ at 0.1 T and 50 kHz through proper processes and a permeability $\mu_{eff}$ of 68 at low frequency.

  • PDF

Study of the Enhancement of Magnetic Properties of NdFeB Materials Fabricated by Modified HDDR Process

  • Fu, Meng;Lian, Fa-zeng;Wang, jie-Ji;Pei, Wen-Ii;Chen, Yu-lan;Yang, Hong-cai
    • Journal of Magnetics
    • /
    • 제9권4호
    • /
    • pp.109-112
    • /
    • 2004
  • The HDDR (Hydrogenation-Disproportionation-Desorption-Recombination) process is a special method to produce anisotropic NdFeB powders for bonded magnet. The effect of the modified HDDR process on magnetic properties of $Nd_2Fe_{14}B$-based magnet with several composition $Nd_{11.2}Fe_{66.5-x}Co_{15.4}B_{6,8}Zr{0.1}Ga_x(x=0{\sim}1.0)$ and that of microelement Ga, disproportional temperature and annealing temperature on $_jH_c$, grain size were investigated in order to produce anisotropic powder with high magnetic properties. It was found that modified HDDR process is very effective to enhance magnetic properties and to fine grain size. The addition of Ga could change disproportionation character remarkably of the alloy and could improve magnetic properties of magnet powder. Increasing annealing temperature induces significant grain growth. And grain size produced by modified HDDR process is significantly smaller than those produced by conventional HDDR process.

고에너지 볼밀링된 Sm-Co 합금 분말의 미세조직 및 자성특성에 미치는 공정변수의 영향 (Effect of Process Parameters on Microstructure and Magnetic Properties of Sm-Co Alloy Powder Prepared by High Energy Ball Milling)

  • 김보식;장시영
    • 한국분말재료학회지
    • /
    • 제17권2호
    • /
    • pp.130-135
    • /
    • 2010
  • Sm-16.7wt%Co alloy powders were prepared by high energy ball milling under the conditions of various milling time and the content of process control agent (PCA), and their microstructure and magnetic properties were investigated to establish optimum processing conditions. The initial powders employed showed irregular shape and had a size ranging from 5 to $110\;{\mu}m$. After milling for 5 h, the shape of powders changed to round shape and their mean powder size was approximately $5\;{\mu}m$, which consisted of the agglomerated nano-sized particles with 15 nm in diameter. The coercivity was reduced with increasing the milling time, whereas the saturation magnetization increased. As the content of PCA increased, the powder size minutely decreased to approximately $7\;{\mu}m$ at the PCA content of 10 wt%. The XRD patterns showed that the main diffraction peaks disappeared apparently after milling, indicating the formation of amorphous structure. The measured values of coercivity were almost unchanged with increasing the content of PCA.

The Influence of Dehydrogenation Speed on the Microstructure and Magnetic Properties of Nd-Fe-B Magnets Prepared by HDDR Process

  • Cha, Hee-Ryoung;Yu, Ji-Hun;Baek, Youn-Kyoung;Kwon, Hae-Woong;Kim, Yang-Do;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.49-54
    • /
    • 2014
  • The influence regarding the dehydrogenation speed, at the desorption-recombination state during the hydrogenation-disproportionation-desorption-recombination (HDDR) process, on the microstructure and magnetic properties of Nd-Fe-B magnetic powders has been studied. Strip cast Nd-Fe-B-based alloys were subjected to the HDDR process after the homogenization heat treatment. During the desorption-recombination stage, both the pumping speed and time of hydrogen were systematically changed in order to control the speed of the desorption-recombination reaction. The magnetic properties of HDDR powders were improved as the pumping speed of hydrogen at the desorption-recombination stage was decreased. The lower pumping speed resulted in a smaller grain size and higher DoA. The coercivity and the remanence of the 200-300 ${\mu}m$ sized HDDR powder increased from 12.7 to 14.6 kOe and from 8.9 to 10.0 kG, respectively. In addition, the remanence was further increased to 11.8 kG by milling the powders down to about 25-90 ${\mu}m$, resulting in $(BH)_{max}$ of 28.8 MGOe.