• Title/Summary/Keyword: magnetic phase (MP)

Search Result 5, Processing Time 0.204 seconds

Magnetic Field Simulation for Circumferential Magnetic Phase Produced in Steam Generator Tube

  • Ryu, Kwon-Sang;Son, Derac;Park, Duck-Gun;Jung, Jae-Kap
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.88-91
    • /
    • 2011
  • Steam generator tubes (SGTs) in nuclear power plants (NPPs) are a boundary between the primary side generating heat by nuclear fission and the secondary side generating electric power by a turbine. The water inside the SGT is high temperature and high pressure. Therefore, defects and magnetic phases (MPs) are partly produced in non-magnetic SGT by high stresses and temperatures. This causes trouble regarding the safety of SGTs but it is difficult to detect the MP using the conventional eddy current technique (ECT). In particular, a circumferential defect (CD) and circumferential magnetic phase (CMP) cannot detected by ECT. Consequently, a new method is needed to detect CDs and CMPs in SGT. A new U-type yoke with two types of coils was designed and the reactance signal by the CMPs and CDs in the SGT material was simulated.

Calculation of the Reactance for a Magnetic Phase Created in a Steam Generator Tube Material

  • Ryu, Kwon-Sang;Jung, Jae-Kap;Son, Derac;Park, Duck-Gun
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.70-73
    • /
    • 2010
  • A magnetic phase is partly produced in a steam generator tube due to stress and heat, because steam generator tubes are exposed to high temperature, high pressure and radioactivity conditions. This adversely affects the safety of steam generator tubes. However, it is difficult to detect it using conventional eddy current methods. Therefore, a new type of probe is needed to separate the signals from the defects and magnetic phases. In this study, a new U-type yoke, which contained two types of coils, a magnetizing coil and detecting coil, was designed. In addition, the signal induced by the magnetic phase and defect in an Inconel 600 plate were simulated.

Resistive Switching Memory Devices Based on Layer-by-Layer Assembled-Superparamagnetic Nanocomposite Multilayers via Nucleophilic Substitution Reaction in Nonpolar Solvent

  • Kim, Yeong-Hun;Go, Yong-Min;Gu, Bon-Gi;Jo, Jin-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.1-243.1
    • /
    • 2011
  • We demonstrate a facile and robust layer-by-layer (LbL) assembly method for the fabrication of nonvolatile resistive switching memory (NRSM) devices based on superparamagnetic nanocomposite multilayers, which allows the highly enhanced magnetic and resistive switching memory properties as well as the dense and homogeneous adsorption of nanoparticles, via nucleophilic substitution reaction (NSR) in nonpolar solvent. Superparamagnetic iron oxide nanoparticles (MP) of about size 12 nm (or 7 nm) synthesized with oleic acid (OA) in nonpolar solvent could be converted into 2-bromo-2-methylpropionic acid (BMPA)-stabilized iron oxide nanoparticles (BMPA-MP) by stabilizer exchange without change of solvent polarity. In addition, bromo groups of BMPA-MP could be connected with highly branched amine groups of poly (amidoamine) dendrimer (PAMA) in ethanol by NSR of between bromo and amine groups. Based on these results, nanocomposite multilayers using LbL assembly could be fabricated in nonpolar solvent by NSR of between BMPA-MP and PAMA without any additional phase transfer of MP for conventional LbL assembly. These resulting superparamagnetic multilayers displayed highly improved magnetic and resistive switching memory properties in comparison with those of multilayers based on water-dispersible MP. Furthermore, NRSM devices, which were fabricated by LbL assembly method under atmospheric conditions, exhibited the outstanding performances such as long-term stability, fast switching speed and high ON/OFF ratio comparable to that of conventional inorganic NRSM devices produced by vacuum deposition.

  • PDF

Cerebrovascular Reservoir and Arterial Transit Time Changes Assessed by Acetazolamide-Challenged Multi-Phase Arterial Spin Labeling Perfusion MRI in Chronic Cerebrovascular Steno-Occlusive Disease (만성 뇌혈관 협착폐색증에서 아세타졸아미드 부하 다상 동맥스핀표지 자기공명관류영상으로 평가한 뇌혈류 예비능과 동맥 통과 시간의 변화)

  • Inpyeong Hwang;Chul-Ho Sohn;Keun-Hwa Jung;Eung Koo Yeon;Ji Ye Lee;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Seung Hong Choi;Ji-hoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.3
    • /
    • pp.626-637
    • /
    • 2021
  • Purpose To explore cerebrovascular reservoir (CVR) and arterial transit time (ATT) changes using acetazolamide-challenged multi-phase arterial spin labeling (MP-ASL) perfusion-weighted MRI in chronic cerebrovascular steno-occlusive disease. Materials and Methods This retrospective study enrolled patients with chronic steno-occlusion who underwent acetazolamide-challenged MP-ASL between June 2019 and October 2020. Cerebral blood flow, CVR, basal ATT, and ATT changes associated with severe stenosis, total occlusion, and chronic infarction lesions were compared. Results There were 32 patients (5 with bilateral steno-occlusion) in our study sample. The CVR was significantly reduced during total occlusion compared with severe stenosis (26.2% ± 28.8% vs. 41.4% ± 34.1%, respectively, p = 0.004). The ATT changes were not significantly different (p = 0.717). The CVR was marginally lower in patients with chronic infarction (29.6% ± 39.1% vs. 38.9% ± 28.7%, respectively, p = 0.076). However, the ATT was less shortened in patients with chronic infarction (-54 ± 135 vs. -117 ± 128 ms, respectively, p = 0.013). Conclusion Acetazolamide-challenged MP-ASL provides an MRI-based CVR evaluation tool for chronic steno-occlusive disease.

Synthesis and Characterization of Polymers with Azobenzene and Hexamethylene Groups in Main Chain (주사슬에 아조벤젠기와 헥사메틸렌기를 갖는 고분자의 합성 및 특성)

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.86-92
    • /
    • 2019
  • Polymers with various compositions of azobenzene and hexamethylene groups in the main chain were synthesized by a Schotten-Baumann reaction and their properties were investigated. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and x-ray diffraction. The polymers showed an inherent viscosity of 1.28-1.36 dl/g and were relatively insoluble in most organic solvents. The melt transition temperature increased rapidly with increasing number of azobenzene groups in the polymer. When the azobenzene monomer content was more than 50 mol%, no melting transition occurred below the decomposition temperature. Among the polymers with a melt transition temperature, the MP-A3C7 and MP-A5C5 polymers were liquid crystalline materials and exhibited a nematic phase with weak liquid crystallinity over a wide liquid crystal temperature range. This difference in the properties of the synthesized polymers is likely due to the changes in intermolecular forces resulting from the linearity and polarity of the trans-form of azobenzene.