• 제목/요약/키워드: magnetic nano-particle

검색결과 78건 처리시간 0.023초

Fe-Nanoparticle Amalgamation Using Lagenaria siceraria Leaf Aqueous Extract with Focus on Dye Removal and Antibacterial Efficacy

  • Kirti;Suantak Kamsonlian;Vishnu Agarwal;Ankur Gaur;Jin-Won Park
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.287-295
    • /
    • 2023
  • Iron nanoparticles (Fe-NPs) were synthesized employing Lagenaria siceraria (LS) leaf aqueous extract as a reducing and capping medium to remove methylene blue (MB) dye and have antibacterial properties against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus). The formation of LS-Fe-NPs (Lagenaria-siceraria-iron-nanoparticles) was confirmed by a change in color from pale yellow to dark brown. Characterization techniques, such as particle size analysis (PSA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to prove nano spherical particles of size range between 80-100 nm. Phytochemicals and the presence of iron in LS-Fe-NPs nanoparticles were proved by UV-visible spectrophotometry. Further, Fourier transform infrared spectroscopy (FTIR) analysis results confirmed the existence of bioactive molecules in the plants. The magnetic property was analyzed using a vibrating sample magnetometer (VSM), which displayed that the synthesized nanoparticles were superparamagnetic and exhibiting a saturation magnetization of 12.5 emu/g. Synthesized magnetic nanoparticles were used in methylene blue (MB) dye removal through adsorption. About 83% of 100 mg/L MB dye was removed within 120 min at pH 6 with a maximum adsorption capacity of 246.8 mg/g. Antibacterial efficacy of LS-Fe-NPs was screened against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus), respectively, and found that LS-Fe-NPs were effective against Staphylococcus aureus.

Tuning of the Interparticle interactions in ultrafine ferrihydrite nanoparticles

  • Knyazev, Yuriy V.;Balaev, Dmitry A.;Yaroslavtsev, Roman N.;Krasikov, Aleksandr A.;Velikanov, Dmitry A.;Mikhlin, Yuriy L.;Volochaev, Mikhail N.;Bayukov, Oleg A.;Stolyar, Sergei V.;Iskhakov, Rauf S.
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.605-616
    • /
    • 2022
  • We prepared two samples of ultrafine ferrihydrite (FH) nanoparticle ensembles of quite a different origin. First is the biosynthesized sample (as a product of the vital activity of bacteria Klebsiella oxytoca (hereinafter marked as FH-bact) with a natural organic coating and negligible magnetic interparticle interactions. And the second one is the chemically synthesized ferrihydrite (hereinafter FH-chem) without any coating and high level of the interparticle interactions. The interparticle magnetic interactions have been tuned by modifying the nanoparticle surface in both samples. The coating of the FH-bact sample has been partially removed by annealing at 150℃ for 24 h (hereinafter FH-annealed). The FH-chem sample, vice versa, has been coated (1.0 g) with biocompatible polysaccharide (arabinogalactan) in an ultrasonic bath for 10 min (hereinafter FH-coated). The changes in the surface properties of nanoparticles have been controlled by XPS. According to the electron microscopy data, the modification of the nanoparticle surface does not drastically change the particle shape and size. A change in the average nanoparticle size in sample FH-annealed to 3.3 nm relative to the value in the other samples (2.6 nm) has only been observed. The estimated particle coating thickness is about 0.2-0.3 nm for samples FH-bact and FH-coated and 0.1 nm for sample FH-annealed. Mössbauer and magnetization measurements are definitely shown that the drastic change in the blocking temperature is caused by the interparticle interactions. The experimental temperature dependences of the hyperfine field hf>(T) for samples FH-bact and FH-coated have not revealed the effect of interparticle interactions. Otherwise, the interparticle interaction energy Eint estimated from the hf>(T) for samples FH-chem and FH-annealed has been found to be 121kB and 259kB, respectively.

졸-겔법에 의한 Cobalt 치환된 Ba-ferrite 분말의 자기적 특성 (Magnetic Properties of Co-substituted Ba-ferrite Powder by Sol-gel Method)

  • 최현승;박효열;윤석영;신학기;김태옥
    • 한국세라믹학회지
    • /
    • 제39권8호
    • /
    • pp.789-794
    • /
    • 2002
  • 본 연구에서는 TMS[Tetramethylsilane:$Si(CH_3)_4$], $NH_3$$H2$를 이용하여 나노크기의 Si-C-N precursor 분말을 합성하기 위하여 CVC법을 이용하였으며 반응온도, TMS/$NH_3$ 비 그리고 TMS/$H_2$ 비를 변화시켰다. XRD와 FESEM 분석을 통해서 결정상과 입자의 크기 그리고 입자의 형태를 관찰하고자 하였으며, 그 결과 제조된 분말은 모든 실험 조건하에서 87∼130 nm 크기를 지닌 균일한 구형의 비정질 분말이 얻어졌다. 입자 크기는 반응온도의 감소에 따라 감소하였으며, 또한 TMS/$NH_3$, TMS/$H_2$ 비가 작아질수록 감소하였다. EA 분석 결과 제조된 분말은 Si, N, C, H로 이루어졌음을 알 수 있었으며 FT-IR를 통하여 Si-N, C-N, Si-C 결합을 가진 Si-C-N precursor 분말이 제조되었다.

Propylene Oxide를 이용한 졸-겔법에 의한 MO·Fe12O18 (M/Ba, Sr) 나노 분말의 합성과 물리적 특성 (Synthesis and Physical Properties of MO·Fe12O18 (M/Ba and Sr) Nanoparticles Prepared by Sol-Gel Method Using Propylene Oxide)

  • 이수진;최석범;곽형섭;백승욱
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.420-425
    • /
    • 2006
  • Propylene oxide (PPO)를 gelation agent로 한 졸-겔법으로 입자가 균일하고 자기적 특성이 우수한 $MO{\cdot}Fe_{12}O_{18}$ (M/Ba and Sr)의 구조식을 가지는 M-type hexagonal ferrite를 제조하였다. 본 방법으로 얻은 졸-겔용액은 매우 안정적인 분산상태를 보이며, $Fe^{3+}$의 겔화가 진행되고, 생성된 $Fe_2O_3$의 표면에서 $Ba^{2+}$ 또는 $Sr^{2+}$의 겔화가 진행되는 것으로 설명될 수 있어서, +3가 이하의 금속이라도 +3가 이상의 금속 존재 하에는 겔화가 가능한 것을 확인하였다. 또한, 기존 방법과 비교하여 값싼 원료를 사용하며, 반응 시간도 1 min 이내로 짧아지는 장점이 있다. 본 제조법으로 얻어진 분말은 기왕에 발표된 문헌 값과 비교하면 $150^{\circ}C$ 이상 낮은 열처리 온도에서 최고의 자기적 특성을 나타냈으며, 향상된 자기적 특성을 보였다. Sr-ferrite의 경우 최대포화자화 값 74.4 emu/g, 보자력 값 6198 Oe을, Ba-ferrite의 경우도 최대포화자화 값 68.1 emu/g, 보자력 값 5155 Oe을 보였다. 이들은 기존에 발표된 문헌 값과 비교하면 각각 10%와 5% 이상 증가된 보자력 값을 나타내어, 고밀도 자기기록재료에 적합함을 확인하였다. 제조된 분말은 1차 건조 분말의 경우 3~5 nm의 입자들이 응집된 50 nm 정도의 구형입자가 생성되고, 열처리 후에는 500 nm 정도의 고른 크기를 가진 육각판상형 입자가 생성된다.

초미세 나노분말 γ-Fe2O3의 초상자성 특성연구 (Superparamagnetic Properties of γ-Fe2O3 Nanoparticles)

  • 이승화;이재광;채광표;안성용
    • 한국자기학회지
    • /
    • 제20권5호
    • /
    • pp.196-200
    • /
    • 2010
  • Sol-gel 법을 이용하여 초상자성 나노 입자 $\gamma-Fe_2O_3$를 제조하였다. 입자의 크기 및 자기적 성질을 x-선 회절법(XRD), Mossbauer 분광법, 진동시료 자화율 측정기(VSM)를 이용하여 연구하였다. x-선 회절 실험결과 150 이상에서 열처리한 입자는 순수한 cubic spinel 구조를 가지며, $150^{\circ}C$에서 열처리한 $\gamma-Fe_2O_3$의 평균입자 크기는 7 nm로다. Mossbauer 분광실험으로 $150^{\circ}C$에서 열처리한 입자는 상온에서 초상자성의 특성을 가지고 있음을 알 수 있었으며 초상자성의 특성을 잃어버리는 차단온도 $T_B$$183^{\circ}C$로 결정하였으며, 또한 자기이방성상수 K = $1.6{\times}10^6erg/cm^3$의 값을 얻었다. $150^{\circ}C$에서 열처리한 $\gamma-Fe_2O_3$의 VSM 측정 결과로부터 $150^{\circ}C$에서 열처리한 $\gamma-Fe_2O_3$의 경우 상온에서 초상자성의 특성을 확인 할 수 있었다.

Doxorubicin Release from Core-Shell Type Nanoparticles of Poly(DL-lactide-co-glycolide)-Grafted Dextran

  • Jeong, Young-Il;Choi, Ki-Choon;Song, Chae-Eun
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.712-719
    • /
    • 2006
  • In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around $50\;nm{\sim}300\;nm$ according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA. $^1H-NMR$ spectroscopy using $D_2O$ and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.

Goethite의 합성 및 형상제어 (Synthesis and Shape Control of Goethite Nano Particles)

  • 최현빈;전명표;전승엽;황진아
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.552-558
    • /
    • 2016
  • Goethite, ${\alpha}$-FeOOH have various applications such as absorbent, pigment and source for magnetic materials. Goethite particles were synthesized in a two step process, where $Fe(OH)_2$ were synthesized in nitrogen atmosphere using $FeSO_4$ as a raw material in the first process, and after that acicular goethite particles were obtained in an air oxidation process of $Fe(OH)_2$ in highly alkaline aqueous solution. Their phase and microstructure were investigated with XRD and FE-SEM. It was found that the morphology of goethite and the ratio of length-to-width (aspect ratio) of acicular goethite are dependent on the some factors such as R value ($OH^-/Fe^{2+}$), air flow rate and pH conditions. In particular, R value has the strongest influence on the synthesized goethite morphology. It is considered that the optimal value R is 4.5 because X-ray diffraction peaks of goethite have the highest intensity at that value. Morphology of goethite particles was controlled by air flow rates, showing that their size and aspect ratio are getting smaller and decrease, respectively as air flow rate increases. The largest goethite particle obtained is about 1,500 nm in length and 150 nm in diameter.

Comparative analysis on darcy-forchheimer flow of 3-D MHD hybrid nanofluid (MoS2-Fe3O4/H2O) incorporating melting heat and mass transfer over a rotating disk with dufour and soret effects

  • A.M. Abd-Alla;Esraa N. Thabet;S.M.M.El-Kabeir;H. A. Hosham;Shimaa E. Waheed
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.325-340
    • /
    • 2024
  • There are several novel uses for dispersing many nanoparticles into a conventional fluid, including dynamic sealing, damping, heat dissipation, microfluidics, and more. Therefore, melting heat and mass transfer characteristics of a 3-D MHD Hybrid Nanofluid flow over a rotating disc with presenting dufour and soret effects are assessed numerically in this study. In this instance, we investigated both ferric sulfate and molybdenum disulfide as nanoparticles suspended within base fluid water. The governing partial differential equations are transformed into linked higher-order non-linear ordinary differential equations by the local similarity transformation. The collection of these deduced equations is then resolved using a Chebyshev spectral collocation-based algorithm built into the Mathematica software. To demonstrate how different instances of hybrid/ nanofluid are impacted by changes in temperature, velocity, and the distribution of nanoparticle concentration, examples of graphical and numerical data are given. For many values of the material parameters, the computational findings are shown. Simulations conducted for different physical parameters in the model show that adding hybrid nanoparticle to the fluid mixture increases heat transfer in comparison to simple nanofluids. It has been identified that hybrid nanoparticles, as opposed to single-type nanoparticles, need to be taken into consideration to create an effective thermal system. Furthermore, porosity lowers the velocities of simple and hybrid nanofluids in both cases. Additionally, results show that the drag force from skin friction causes the nanoparticle fluid to travel more slowly than the hybrid nanoparticle fluid. The findings also demonstrate that suction factors like magnetic and porosity parameters, as well as nanoparticles, raise the skin friction coefficient. Furthermore, It indicates that the outcomes from different flow scenarios correlate and are in strong agreement with the findings from the published literature. Bar chart depictions are altered by changes in flow rates. Moreover, the results confirm doctors' views to prescribe hybrid nanoparticle and particle nanoparticle contents for achalasia patients and also those who suffer from esophageal stricture and tumors. The results of this study can also be applied to the energy generated by the melting disc surface, which has a variety of industrial uses. These include, but are not limited to, the preparation of semiconductor materials, the solidification of magma, the melting of permafrost, and the refreezing of frozen land.