• Title/Summary/Keyword: magnetic microscope

Search Result 176, Processing Time 0.031 seconds

Microstructural and Magnetic Characterization of Fe Nanosized Powder Synthesized by Pulsed Wire Evaporation

  • Kim, Deok Hyeon;Lee, Bo Wha
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.100-103
    • /
    • 2017
  • We studied the microstructure and magnetic properties of Fe nanosized powder synthesized by the pulsed wire evaporation method. The x-ray diffraction spectrum confirmed that this powder had a pure ${\alpha}$-Fe phase. Scanning electron microscope and transmission electron microscope measurements indicated that the prepared powder had uniform spherical shape with core-shell structure. The mean powder size was about 35 nm and the thickness of the surface passivation layer was about 5 nm. Energy dispersive X-ray spectroscopy measurement indicated that the surface passivation layer was iron oxide. Magnetic field dependent magnetization measurement at room temperature showed that the maximum magnetization of the prepared powder was 177.1 emu/g at 1 T.

SUBMICRON-RESOLUTION DOMAIN REVERSAL STUDY OF Co-BASED MULTILAYERS USING MAGNETO-OPTICAL MICROSCOPE MAGNETOMETER (MOMM)

  • Shin, Sung-Chul;Choe, Sug-Bong
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.121-146
    • /
    • 2000
  • A novel system of magneto-optical microscope magnetometer (MOMM), capable of simultaneous local problems of magnetic properties as well as real-time magnetic domain evolution imaging of ferromagnetic thin films with 400-nm spatial resolution, New findings in domain reveral dynamics of Co-based multilayers: The reversal ratio of V/R is a governing physical parameter. The activation volumes of wall-motion and nucleation processes are generally unequal. Submicron-scale local coercivity variation determines domain reversal dynamics. A thermally activated relaxation process during domain reversal is existed on the submicron-scale in realistic films. Local variation of magnetic properties should be considered for a realistic simulation. The fantastic capabilities of the MOMM can open many possibilities to broaden and deepen our understanding of domain reversal phenomena in ferromagnetic thin films.

  • PDF

Microstructural Change and Magnetic Properties of Nanocrystalline Fe-Si-B-Nb-Cu Based Alloys Containing Minor Elements

  • Nam, Seul-Ki;Moon, Sun-Gyu;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.327-332
    • /
    • 2014
  • The effect of minor element additions (Ca, Al) on microstructural change and magnetic properties of Fe-Nb-Cu-Si-B alloy has been investigated, in this paper. The Fe-Si-B-Nb-Cu(-Ca-Al) alloys were prepared by arc melting in argon gas atmosphere. The alloy ribbons were fabricated by melt-spinning, and heat-treated under a nitrogen atmosphere at $520-570^{\circ}C$ for 1 h. The soft magnetic properties of the ribbon core were analyzed using the AC B-H meter. A differential scanning calorimetry (DSC) was used to examine the crystallization behavior of the amorphous alloy ribbon. The microstructure was observed by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The addition of Ca increased the electrical resistivity to reduce the eddy current loss. And the addition of Al decreased the intrinsic magnetocrystalline anisotropy $K_1$ resulting in the increased permeability. The reduction in the size of the ${\alpha}$-Fe precipitates was observed in the alloys containing of Ca and Al. Based on the results, it can be concluded that the additions of Ca and Al notably improved the soft magnetic properties such as permeability, coercivity and core loss in the Fe-Nb-Cu-Si-B base nanocrystalline alloys.

Application of Image Processing to Determine Size Distribution of Magnetic Nanoparticles

  • Phromsuwan, U.;Sirisathitkul, C.;Sirisathitkul, Y.;Uyyanonvara, B.;Muneesawang, P.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.311-316
    • /
    • 2013
  • Digital image processing has increasingly been implemented in nanostructural analysis and would be an ideal tool to characterize the morphology and position of self-assembled magnetic nanoparticles for high density recording. In this work, magnetic nanoparticles were synthesized by the modified polyol process using $Fe(acac)_3$ and $Pt(acac)_2$ as starting materials. Transmission electron microscope (TEM) images of as-synthesized products were inspected using an image processing procedure. Grayscale images ($800{\times}800$ pixels, 72 dot per inch) were converted to binary images by using Otsu's thresholding. Each particle was then detected by using the closing algorithm with disk structuring elements of 2 pixels, the Canny edge detection, and edge linking algorithm. Their centroid, diameter and area were subsequently evaluated. The degree of polydispersity of magnetic nanoparticles can then be compared using the size distribution from this image processing procedure.

Nano-scale Precision Polishing Characteristics using a Micro Quill and Magnetic Chain Structure (미세공구와 자기체인구조를 이용한 초정밀 폴리싱 특성)

  • 박성준;안병운;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.34-42
    • /
    • 2004
  • A new polishing technique for three dimensional micro/meso-scale parts is suggested using a micro quill and a magnetic chain structure. The principle of this method is to polish the target surface with the collected magnetic brushes at a micro tool by the non-uniform magnetic field generated around the tool. In a typical magnetic abrasive finishing process magnetic particles and abrasive particles are unbonded each other. But, to finish the three dimensional small parts bonded magnetic abrasive have to be used. Bonded magnetic abrasives are made from direct bonding, and their polishing characteristics are also examined. Alumina, silicon carbide and diamond micro powders are used as abrasives. Base metal matrix is carbonyl iron powder. It is found that bonded magnetic abrasives are superior to unbonded one by experiment. finally, the polished surface roughness is evaluated by atomic force microscope.

A STUDY ON THE PHYSICAL PROPERTIES AND BIOLOGICAL CHARACTERISTICS OF DENTAL MAGNETIC ATTACHMENTS (치과용 자석부착장치의 물리적, 생물학적 특성에 관한 연구)

  • Lim, Yong-Sik;Kim, Yung-Soo;Kim, Chang-Whe;Kim, Yong-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.1-22
    • /
    • 1999
  • In order to investigate various physical and biological properties of dental magnetic attachments studies on retentive characteristics, corrosion properties, cytotoxicity of different magnetic systems for dental applications were done. For the study of retentive characteristics changes of retentive force by increasing air gap, wear properties of various attachment systems and loss of magnetic force by heat treatment were measured. Forte study of corrosion property of magnet covering metal electrochemical corrosion was done in artificial saliva and 0.9% NaCl solution between $-1,000mV_{SCE}\;and\;+1,000mV_{SCE}$. Anodic polarization curves are obtained about 6 types of samples and 2 types of solution. Corroded surfaces were examined with metallurgical microscope, scanning electron microscope and surface profilometer. For the study of cytotoxicity of magnetic attachment and its field cell growth and agar overlay test were done. The results of this study were as follows. 1. In Magnetic attachments using closed circuit retentive force at zero air gap was greater than magnets using open circuit, but decrease of retentive force by increasing air gap was also greater than open systems. 2. After 40,000 cycles of wear test all mechanical attachment resulted in varing degree of retention loss but in magnetic attachments no loss of retentive force was observed. 3. The magnetic attachment using Neodymium magnet showed early loss of retentive force about $200^{\circ}C$ but attachment using Samarium magnet showed some resistance to heat treatment and complete retention loss was observed about $500^{\circ}C$. The keeper was not influenced by heat treatment in retention. 4. In electrochemical corrosion test Dyna magnetic attachment covering metal showed the highiest corrosion resistance and Shiner magnet covering metal showed the least corrosion resistance and examination of corroded surface with metallurgical microscope, scanning electron micro-scope and surface profilometer also showed same results with anodic polarization corves. 5. The result of cell culture tests on the magnet covered with metal showed least recognizable cytotoxicity.

  • PDF

Prerequisites on the Pre-installation and Installation of Analytical Electron Microscope (전자현미경 관련장비 선택요령 및 설치조건)

  • Kim, Dae-Joong
    • Applied Microscopy
    • /
    • v.25 no.2
    • /
    • pp.80-87
    • /
    • 1995
  • An analytical electron microscope system has been widely used in biology, medicine, veterinary medicine, agriculture, and materials, etc. nowadays in Korea Market since mid of 1980's. How to install and to choose the equipments? The answers are which prerequisites are needed to us. The purpose is going to introduce the prerequisites of the pre-installation and installation of Philips analytical electron microscope(CM 12/STEM and SEM 515, Philips, The Netherlands) in the National Institute of Safety Research, Seoul and to discuss the check-subjects. The check-subjects in the pre-installation and installation are more than 24. The influence of magnetic fields, mechanical vibrations, earth is crucial factor for decision of installation site. The areas of our electron microscope center are $105.6m^2$ and have the Automatic Image Analyzer System(IBAS, Kontron Co., Germany) connecting to the SEM mode. Water temperature was controlled by the NESLAB recirculatory chillers(NESLAB Co., U.S.A.).

  • PDF

Width-Dependent Transition of Magnetic Domain Configuration in Nanostructured CoFe/Pt Multilayered Nanowires

  • Je, Soong-Geun;Lee, Jae-Chul;Kim, Kab-Jin;Min, Byoung-Chul;Shin, Kyung-Ho;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.242-244
    • /
    • 2012
  • We report on the basis of experiments that magnetic domain structures exhibit a transition between single and dendrite domains with respect to the width of ferromagnetic nanowires. This transition is directly observed in CoFe/Pt multilayered nanowires having a width in the range of 580 nm to 4.2 ${\mu}m$ with a magnetic force microscope. Nanowires wider than 1.5 ${\mu}m$ show typical dendrite domain patterns, whereas the nanowires narrower than 690 nm exhibit single domain patterns. The transition occurs gradually between these widths, which are similar to the typical widths of the dendrite domains. Such a transition affects the strength of the domain wall propagation field; this finding was made by using a time-resolved magneto-optical Kerr effect microscope, and shows that the domain wall dynamics also exhibit a transition in accordance with the domain configuration.

The Effect of Magnetism(Neodymium Magnet) on Activity of Osteoblast (뼈모세포의 활성도에 대한 자성의 효과에 관한 연구)

  • Cho, Young-Wook;Choi, Boo-Byung;Lee, Seong-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.3
    • /
    • pp.185-193
    • /
    • 2003
  • The object of this study is to observe the effects of magnetism on the osteoblasts using a neodymium magnet. The osteoblasts was cultured under magnetic fields of varying intensities to evaluate the effect of magnetism on the activity and alkaline phosphatase acitivty of the osteoblasts. Osteoblasts were cultured in the cell density of $10^4$ for the evaluation of cell proliferation and 105/ml for the evaluation of ALP activity under 0. 10, 100, 500, 1000, 2000, 4000 gauss for 24 hour. For evaluation of osteoblast morphologic changes under magnetic, osteoblasts were observed by inverted microscope and TEM. To elucidate if IGF-receptors are increased under the magnetic field, we investigated osteoblasts by immunofluoroscence staining. The results were as follows: In the varying intensities of magnetic fields, the degree of cell proliferation was the highest in the magnetic field of 10 gauss and this gradually decreased up to 1000 gauss. In the magnetic fields stronger than 1000 gauss, the degree of the cell proliferation decreased to an even lower level than that of the control group. The ALP activity and protein synthesis showed a similar increase pattern as the degree of cell proliferation compared to the control group but showed little difference. Under the microscope, morphological change of the cells ( decrease in length and increase in roundness) were observed but no peculiarity of cell distribution could be found according to the magnetic field line. In the proper intensity of magnetic fields (10 gauss), the cultured cells showed increase in number of IGF Receptors compared to that of the control group.